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Introduction

Genetic programming (GP) is an AI technique, which falls into broader category
of evolutionary algorithms — mataheuristic search algorithms inspired by biolog-
ical evolution by natural selection. I dare say many people perceive its beauty in
the fact that GP is a computer program constructing other computer programs
with desired properties by breeding them. It is also pretty successful technique
in a number of areas [2]. And perhaps that is why GP has become very popular.

GP constructs the population of solution programs from two sets of building
blocks; set F of functions and set T of constants and variables. In standard GP
closure of those building blocks is required. This means that all functions in F
must accept all constants and variables from T as their arguments and produce
such values that are also acceptable by all functions in F as arguments. Main
motivation behind this thesis is to design and implement a system that eliminates
this constraint. This can be achieved by utilization of types. Utilization of types
in GP is not a new idea; it was dealt with in various previous works [4, 5, 6, 7].

This thesis deals with this task using concepts from theory of typed λ-calculus
and combinatory logic and shows how to use them in GP. Hopefully, it is also
shown that those two fields are nicely linked together. Several enhancements are
derived from this theoretical background and shown to have positive effect on
performance of our system. Our main focus lies in the process of generating the
initial population.

Design of a GP system utilizing these methods is presented. This design aims
to be generalization of standard GP developed by Koza[1], rather than being
specialized variant of GP using more recent techniques. This decision is based
on belief that simplicity of design of standard GP plays nicely with testing those
λ-calculus concepts in the evolutionary context and on belief that modern spe-
cialized techniques can be incorporated later.

Notable highlights of the thesis are:

• Inhabitation tree is presented and used for generation of individuals. This
generation process is parameterized by simple search strategy. Several
search strategies are presented, such as systematic strategy performing ex-
haustive enumeration of individuals and strategy performing generalization
of standard GP term generating method ramped half-and-half.

• One of proposed search strategies, the geometric strategy, is examined in a
couple of experiments and shown to have several desirable properties.

• The η-normalization of generated individuals and @-tree representation of
individuals, two enhancements of the system inspired from the theoretical
background are examined and shown to have improving effect on perfor-
mance of the system.

• Abstraction elimination is utilized to enable use of simple mutation operator.
Both simple and optimize versions of this transformation are examined.
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Described system is implemented in purely functional language Haskell. Eval-
uation of individual λ-terms is performed by translating them to Haskell programs
and evaluating them in Haskell interpreter. The core part of the system runs as
server, which is managed through user interface accessible via web browser. So-
lution individuals are also translated to JavaScript expressions, which enables
an interactive solution presentation. This approach helps us with demonstrating
that λ-terms can be easily translated to a widely used programming language.

Several example problems for the designed system are presented and exam-
ined. Those examples are not intended to bring breakthrough results; they are
intended to serve as demonstration of that the system is working properly, as
instrument for examining presented techniques and as demonstration of several
directions in which the system can be used.
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1. Genetic Programming

Genetic programming is a technique inspired by biological evolution that for a
given problem tries to find computer programs able to solve that problem. GP
was developed by John Koza in 1992 [1].

A problem to be solved is given to GP in a form of fitness function. Fitness
function is a function which takes computer program as its input and returns
numerical value called fitness as output. The bigger fitness of a computer program
is, the better solution of a problem.

GP maintains a collection of computer programs called population. A member
of population is called individual. By running GP algorithm evolution of those
individuals is performed.

Individuals are computer program expressions kept as syntactic trees. Basi-
cally those trees are rooted trees with a function symbol in each internal node
and with constant symbol or variable symbol in each leaf node. Number of child
nodes for each internal node corresponds to the number of arguments of a function
whose symbol is in that node.

Another crucial input besides fitness function is a collection of building blocks1.
It is a collection of symbols (accompanied with an information about number of
arguments). Those symbols are used to construct trees representing individuals.

Let us describe GP algorithm briefly. At the beginning, initial population is
generated from building blocks randomly. A step of GP algorithm is stochastic
transformation of the current population into the next population.

This step consists of two sub steps:

• Selection of parents for individuals of the next population based on the
fitness. The bigger fitness of an individual of the current population is, the
better chance of success being selected as parent it has.

• Application of genetic operators (such as crossover, reproduction and mu-
tation) on parent individuals producing new individuals of the next popu-
lation.

This transformation is repeatedly applied for a predefined number of steps (which
is called number of generations) or until some predefined criterion is met.

Let us now look on GP in greater detail.

1Throughout this thesis, we use the term building blocks differently than it is sometimes
used in GP context. Hopefully it will not confuse the reader.
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1.1 Program trees

In GP programs are represented as S-expressions. Let us define S-expression
inductively:

1. Constant or variable symbol s is S-expression.2

2. Let there be a function with symbol f which has n arguments.

And let there be S-expressions e1, ..., en.

Then ( f e1 ... en ) is expression.3

There is straightforward tree representation corresponding to these two cases:

1. One node tree s.

2. f

t1 ... tn

where t1, ..., tn are trees corresponding to S-expressions e1, ..., en.

Computer program with inputs x1, ..., xn is realized as expression in which
may occur variables x1, ..., xn.

1.2 Building blocks

Set of building blocks consists of two sets.

• Terminal set T : Set of symbols used as leaf nodes of program trees standing
for constants and variables.

• Function set F : Set of symbols used as internal nodes of program trees
standing for functions.

Therefore building blocks = T ∪ F .

For each symbol in T ∪F that is not variable there must also be an implemen-
tation. And for every function symbol from F there must be specified number of
arguments.

There is one important constrain on function implementations for functions
from F: There must be type A that for every function symbol f ∈ F the corre-
sponding function implementation standing behind this symbol must be of a type
A× ...×A→ A and must be total (defined on all combinations of inputs). And
analogically for t ∈ T being of a type A.

2 By constants we also mean procedures with zero arguments.
3 This notation comes from Lisp programming language, a more standard notation would

be f(e1, ..., en).
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Satisfying this constrain ensures that every program tree build from T ∪ F
will be total. We will refer to this constrain as to closure.

We can say that the motivation behind this thesis is to construct system,
where building blocks may be of any type.

1.3 Generating individuals

We will describe tree generating method described by Koza [1] called ramped
half-and-half.

An individual tree is constructed by random (uniform) selection of symbol
from subset of T ∪F for the root node and after that by generation of its subtrees
recursively. Number of subtrees of a node corresponds to the number of arguments
for the selected symbol.

There are two generating sub-methods called full and grow ; each of them
restricting differently the subset of T ∪ F . This restriction depends on depth of
the node for which the symbol is being selected.

In order to perform ramped half-and-half method one of those two sub-methods
is randomly (uniformly) selected and the selected one is performed. This selection
is done for each generated tree, so there is 50% chance for tree to be generated
by full and 50% chance for tree to be generated by grow.

A maximum depth Dinitial is defined (e.g. Dinitial = 6).
For each tree is selected its depth d from {2, . . . , Dinitial} randomly (uniform-

ly).

In the root (depth = 0) both full and grow select the symbol from the set F .
In nodes with depth < d the full method selects from the set F , whereas the

grow method selects from whole T ∪ F .
In nodes with depth = d both methods select from the set T .
Generated individual is added into the initial population only if the initial

population does not yet contain this individual. This way it is guaranteed that
every individual is unique in the initial population.

1.4 Evaluation

Evaluation is process of assigning fitness value to all individuals in the population.
It is also usual to check individuals for being correct solution. If such a correct
solution is find, the algorithm terminates. In our implementation fitness function
returns pair of real number (fitness value) and boolean value (indicating whether
tested individual is correct solution).
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1.5 Selection

In the field of evolutionary algorithms there is plenty of options for selection
mechanisms for us to choose from. Again we will describe mechanism Koza used
in his first book on GP. It is the Roulette selection. It uses fitness value of
each individual in straightforward way to determine probability of selecting this
individual.
Let there be popSize individuals in the population.
And let fi be fitness value for individual i where i ∈ {1, . . . , popSize}.

Then pi probability of selection of individual i is computed as follows:

pi =
fi

popSize∑
j=1

fj

1.6 Crossover

For Koza the most important genetic operator in GP is crossover. It is operator
inspired by sexual reproduction occurring in the nature. Generally speaking
crossover takes two (parent) individuals and combines theirs genomes to produce
two possibly new (offspring) individuals.

In GP the most common crossover is Subtree swapping crossover. This crossover
randomly selects one node in each parent tree.

With probability pip (e.g. pip = 90%) the crossover node is randomly (uni-
formly) selected from internal nodes (i.e. function nodes) and with probability
1− pip (e.g 10%) from leaf nodes. This is done for both parents.

Two new child individuals are constructed by swapping subtrees that have
roots in those selected nodes.

Example should clarify this process. Here are two parent trees with selected
nodes in bold:

ifneq

1 iflt

0 x −

0 x

1

+

x 2

1

%

x ifeq

1 x x 0

And here are two child trees with swapped subtrees:

ifneq

1 ifeq

1 x x 0

+

x 2

1

%

x iflt

0 x -

0 x

1
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A maximum permissible depth Dcreated for offspring individuals is defined (e.g.
Dcreated = 17). If one of the offspring has greater depth than this limit, then this
offspring is replaced by the first parent in the result of the crossover operator. If
both offspring exceeds this limit, than both are replaced by both parents.

1.7 Reproduction

Reproduction is simple mechanism providing preservation of solutions from the
current population to the next one. It simply copies one individual to the next
population.

1.8 Mutation

Mutation is genetic operator modifying one individual. There are many options
for mutation mechanisms for us to choose from. Here will be described Subtree
generating mutation witch uses mechanism for generating individuals.

This mutation randomly selects one node in the individual tree. New mutant
individual is constructed by replacement of subtree with root in the selected node
by new generated tree. This new tree is generated by mechanism for generating
individuals.

Analogically as for crossover, a maximum permissible depth for mutant indi-
vidual is defined.

Similarly as Koza in [1], we do not use the mutation operator in this thesis.
This does not mean that I do not like it. Conversely, I am looking forward too
its enhancing effect in the future work.

1.9 Construction of next population

Let popt be the current population that we want to transform into the next
population popt+1. We start by initializing popt+1 by empty population.

Then we iteratively fill popt+1 by individuals returned by genetic operators.
In each iteration one genetic operator is randomly selected. Then required

amount of individuals for the operation is selected by individual selection mech-
anism described above (one or two individuals for our genetic operators). And
those selected individuals are used as input for selected genetic operator which
produces some new individuals. Those new individuals are inserted into popt+1.

This process continues until popt+1 is filled with popSize individuals.
Selection of genetic operation in each operation is controlled by probabilities

for each genetic operator.

Koza[1] uses as default probabilities those values:

• Crossover : 90%

• Reproduction : 10%

• Mutation : 0%
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1.10 GP algorithm in pseudocode

Bellow is described GP algorithm in pseudocode. It is slight modification of the
standard GP algorithm, because the best individual of the generation is preserved
unchanged into the next generation.

function GP( fitness, T ∪ F , popSize, numGens, probabs )
gen← 0
pop← generateInitialPopuletion( T ∪ F )
(popWithF itness, terminate, best)← evaluate(fitness, pop)

while gen < numGens ∧ ¬terminate do
newPop← empty population
newPop.insert( best )

i← 1
while i < popSize do

op← probabilisticallySelectOperation(probabs)

switch op do
case Crossover

parent1← selection( popWithF itness )
parent2← selection( popWithF itness )

(child1,child2) = crossover( parent1 , parent2 )

newPop.insert( child1 )
newPop.insert( child2 )
i← i+ 2

case Reproduction
indiv ← selection( popWithF itness )
newPop.insert( indiv )
i← i+ 1

case Mutation
indiv ← selection( popWithF itness )
mutant← mutate( indiv , T ∪ F )
newPop.insert( mutant )
i← i+ 1

pop← newPop
(popWithF itness, terminate, best)← evaluate(fitness, pop)
gen← gen+ 1

return popWithF itness
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Let us clarify the input arguments:

• fitness - Fitness function.

• T ∪F - Building blocks accompanied with an information about implemen-
tations and argument numbers.

• popSize - Population size.

• numGens - Number of generations.

• probabs - Genetic operators probabilities.

Behaviors of contained procedures are hopefully clear from verbal description.

For more detailed information on subject of GP and its many variants see [3]
containing many references to other works.
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2. Mathematical background

In this chapter we briefly describe key concepts of simply typed λ-calculus. We
try to favor readability over formality, for more detailed and formal treatment of
this subject see [10, 11].

After introductory description, an analysis of term generation follows; a path
from inference rules to term generating grammar rules is shown, long normal
form (lnf) is described, followed by term generating grammar for lnf and analysis
of its relevant properties (such as its relation to βη-nf ), then inhabitation tree
is presented — an implementation friendly refinement of lnf term generating
grammar.

2.1 λ-terms

Here we describe programming language, in which we generate individual pro-
grams — so called λ-terms.

Definition. Let V be infinite countable set of variable names. Let C be set of
constant names, V ∩ C = ∅. Then Λ is set of λ-terms defined inductively as
follows.

x ∈ V ∪ C ⇒ x ∈ Λ

M,N ∈ Λ⇒ (M N) ∈ Λ (Function application)

x ∈ V,M ∈ Λ⇒ (λx .M) ∈ Λ (λ-abstraction)

Function application and λ-abstraction are concepts well known from common
programming languages. For example in JavaScript (M N) translates to expres-
sionM(N) and (λx .M) translates to expression function(x){return M;}. In
other words, the function application corresponds to the act of supplying a func-
tion with an argument and the λ-abstraction is equivalent to anonymous function.

It is usual to not distinguish between V and C and just use one set of variable
names. But because this distinction is quite convenient for us in the implemen-
tation, we use it even here. Hopefully, it will not confuse the reader.

We can use V = Σ+, set of all non-empty finite strings of symbols from Σ
where Σ is some alphabet set, e.g. Σ = {a, . . . , z}.

And C is set supplied by ”the user” to enrich the language with constant
names standing for some predefined behavior.

A constant may stand just for another λ-term or it may stand for some prede-
fined constant such as 0,1,2,... and primitive operations on them, e.g. addition.
But the specific implementations of these constants will not be ours big concern
while reasoning about methods for generating λ-terms.

We use upper case symbols such as M,N,M1,M2, ..., N1, N2, ... to denote ar-
bitrary lambda terms in contrast with those in lower case such as a, b, c, ..., x, y, z,
f1, f2, ..., g1, g2, ... denoting variable names, elements of V .
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Sometimes we will use lower case symbols to denote arbitrary variable names
(such as x in (λx .M)), and at other times, we will use them as specific variable
names in specific terms (such as x in (λx . x)). The distinction between the two
should be clear from the context.

We use bold upper case symbols such as S,K, I as abbreviation for specific
fixed terms, e.g. I always means (λx . x).

We use following notation abbreviations for better readability.

1. M1 M2 M3 . . . Mn for (. . . ((M1 M2) M3) . . . Mn)

2. λx1x2 . . . xn .M for (λx1 . (λx2 . . . . (λxn .M) . . .))

For example we can write (λ f . (λ g . (λx . ((f x) (g x))))) as λ f g x . f x (g x).

Here follow some examples of λ-terms.

x
(λx . x)
(λx . f)
((λx . (x x)) (λx . (x x)))
(λx . (λ y . x))
(λ f . (λ g . (λx . ((f x) (g x)))))

2.1.1 Subterms, free variables and substitution

In order to demonstrate what is a subterm of a term let us define inductively
ST(M) set of all subterms of a term M .

ST(x) = {x}
ST((P Q)) = {(P Q)} ∪ ST(P ) ∪ ST(Q)

ST(λx . P ) = {λx . P} ∪ ST(P )

FV(M) the set of free variables of a term M is defined inductively as follows.

FV(x) = {} if x ∈ C
FV(x) = {x} if x ∈ V

FV((P Q)) = FV(P ) ∪ FV(Q)

FV(λx . P ) = FV(P ) r {x}

A variable in λ-term M is called bound if it is not free.
λ-term M is called combinator if FV(M) = ∅.

Notable examples of combinators are combinators S, K and I.

S = λ f g x . f x (g x)

K = λx y . x

I = λx . x

13



As will be shown in 3.3.1 these combinators will help us in performing crossover
of λ-terms.

M [x := N ] the substitution of a term N for the free occurrences of a variable
x in a term M is defined inductively as follows.

x[x := N ] = N

y[x := N ] = y where x 6= y

(P Q)[x := N ] = (P [x := N ] Q[x := N ])

(λx . P )[x := N ] = λx . P

(λ y . P )[x := N ] = λ y . (P [x := N ]) where x 6= y, y 6∈ FV(N)

In order to satisfy the y 6∈ FV(N) condition, names of bound variables are
chosen such that they differ from the free ones in the term.

2.1.2 β-reduction

In order to perform computation there must be some mechanism for term evalu-
ation. In λ-calculus there is β-reduction for this reason.

A term of a form (λx .M)N is called β-redex. A β-redex can be β-reduced to
term M [x := N ]. This fact is written as relation →β of those two terms:

(λx .M)N →β M [x := N ] (2.1)

It is also possible to reduce subterm β-redexes which can be formally stated as:

P →β Q⇒ (R P )→β (R Q)

P →β Q⇒ (P R)→β (Q R)

P →β Q⇒ λx . P →β λx .Q

In other words, β-reduction is the process of insertion of arguments supplied
to a function into its body.

Another useful relations are �β and =β defined as follows.

1. (a) M �β M

(b) M →β N ⇒M �β N

(c) M �β N,N �β L⇒M �β L

2. (a) M �β N ⇒M =β N

(b) M =β N ⇒ N =β M

(c) M =β N,N =β L⇒M =β L

We read those relations as follows.

1. M �β N — ”M β-reduces to N .”

2. M →β N — ”M β-reduces to N in one step.”

3. M =β N — ”M is β-convertible to N .”

14



2.1.3 η-reduction

Similarly as for β-reduction we can define η-reduction except that instead of 2.1
we use:

(λx . (M x))→η M if x 6∈ FV (M)

Analogically, a term of a form (λx . (M x)) is called η-redex.
Relation →βη =→β ∪ →η. (Relation R = { (a, b) | a R b }.)
Similarly as for �β and =β we can define relations �η, =η,�βη and =βη.

2.1.4 η−1-reduction

η−1-reduction (also called η-expansion) is the reduction converse to η-reduction.
Again it may be obtained by replacing 2.1, now with:

M →η−1 (λx . (M x)) if x 6∈ FV (M)

2.1.5 β-normal form

1. A λ-term is a β-normal form (β-nf ) if it does not have a β-redex as subterm.

2. A λ-term M has a β-nf if M =β N and N is a β-nf .

A normal form may be thought of as a result of a term evaluation.
Similarly we can define η-nf and βη-nf .

2.1.6 Tree representations of λ-terms

From the definition of λ-term we can straightforwardly derive the standard tree
representation for λ-terms, which we call @-tree. Term M is translated into @-tree
T@[M ] by following rules.

1. T@[x] := x (i.e. x ∈ V ∪ C becomes one node tree x)

2. T@[(P Q)] := @

T@[P ] T@[Q]

3. T@[λx.P ] := λx

T@[P ]

We can enhance this representation by replacing third rule by following one.
It compressing consecutive λ-abstractions into one @-tree node.

T@[λx1 . . . xn.P ] := λx1 . . . xn

T@[P ]
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Since this representation comes directly from definition, it is evident that it
covers all possible λ-terms.

Following tree representation is extension of S-expression trees described in 1.1,
thus we call it sexpr-tree. Unlike @-tree, it is not able to cover all λ-terms, but
only those in β-nf . Term M is translated into sexpr-tree TS[M ] by following rules.

1. TS[x] := x

2. TS[(fM1M2 . . .Mm)] := f

TS[M1] TS[M2] . . . TS[Mm]

3. TS[λx1 . . . xn.M ] := λx1 . . . xn

TS[M ]
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2.2 Types

A λ-term as described above corresponds to a program expression with no type
information included. Now we will describe types (or type terms). After putting
those two pieces (λ-terms and types) together we will get system called simply
typed λ-calculus.

Definition. Let A be set of atomic type names. Then T is set of types inductively
defined as follows.

α ∈ A⇒ α ∈ T
σ, τ ∈ T⇒ (σ → τ) ∈ T

Type σ → τ is type for functions taking as input something of a type σ and
returning as output something of a type τ .

Usually A is called set of type variables, but since it might be source of confu-
sion with polymorphic type variables we prefer this name, which also better suits
our usage.

Specific definition of A is not so important, but for practical purposes we
can think of it as the set of all non-function types relevant in our situation, e.g.,
A = {Int, IntList, Bool, BoolList, Char, String}. Or we can think of A more
generally as of set of all non-empty strings of symbols of some alphabet.

We use following notation abbreviation for better readability:
τ1 → τ2 → . . .→ τn means τ1 → (τ2 → (. . .→ (τn−1 → τn) . . . )).

In other words, the operator → is right-associative.

It is easy to see that every σ ∈ T may be expressed as τ1 → . . . → τn → α
where α ∈ A and n ≥ 0.1

Technically speaking, we have types only for functions with one argument, but
this property suggests how we can ”simulate” function which takes n arguments.

This technique (or trick) is called Currying.2

2.2.1 Statements of the form M : σ

Definition. Let Λ be set of λ-terms. Let T be set of types. A statement M : σ
is a pair (M,σ) ∈ Λ× T.

Statement M : σ is vocalized as ”M has type σ”. The type σ is called the
predicate and the term M is called the subject of the statement M : σ.

We can look on this relation in tree different ways.

1 We can prove it by induction on size of σ. For σ = α ∈ T is n = 0 and for σ = τ0 → ρ we
have from induction hypothesis that ρ = τ1 → . . . → τn → α, therefore σ = τ0 → τ1 → . . . →
τn → α.

2More formally, currying is process of transforming a function which takes multiple inputs
into function that takes one argument and returns function with one less argument.
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Programming point of view. Statement M : σ means that value M is an
instance of data type σ. So statement M : σ is somehow analogous to Java
expression M instanceof σ.3

Type constrains the value and gives information about it, e.g., function
f : σ → τ is constrained to only accept values of a type σ as input and
must return value of a type τ as output.

Set point of view. Statement M : σ can also be viewed as relation M ∈ σ.
This makes us look on types as on collections of their instances.

Logic point of view. According to the Curry–Howard correspondence we can
read statement M : σ as ”M is a proof of formula σ”. We will not treat
this interesting subject in much detail, let us just say that → corresponds
to the implication ⇒ and atomic types correspond to propositional vari-
ables. The whole system of simply typed λ-calculus then corresponds to the
implicational fragment of propositional intuitionistic logic.

Intuition is that the proof of A⇒ B can be imagined as function expecting
proof of A and utilizing it in production of the proof of B that is returned
as output of the function.

We are mentioning this beautiful correspondence in hope that it will help
clarify use of inference rules, which are key concept in the process of deriving
valid statements about terms and types.

2.2.2 Context

Definition.

1. A declaration is a statement x : σ where x ∈ V ∪ C.

2. A context (or basis) is set of declarations with distinct variables as subjects.

Again our definition slightly differs from the standard one in that it permits
more than one declaration with the same constant, which enables us to simu-
late very primitive kind of ad-hoc polymorphism by ”constant overloading”. And
again it does not affect the theory; it just seems less confusing to me to state
these definitions as they are later used in the implementation.

In our system, the set of building blocks (the equivalent of the set T ∪ F in
standard GP) will be a context with all declarations having constants as subjects,
i.e., a set of constants together with their types.

In the process of term generation, this initial context is being further extend
with variables — by ”entering inner scopes of bodies of lambda functions”.

Notation Γ, x : σ denotes Γ ∪ {(x : σ)} such that Γ does not contain any
declaration with x as subject.

3 This analogy is inadequate in that instanceof is construct of the language, whereas : is
symbol out of the language, it enables us to talk about terms from outside perspective.
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2.2.3 Simply typed λ-calculus

Definition. A statement M : σ is derivable from a context Γ (notation Γ `M : σ)
if it can be produced by the following rules.

(x, σ) ∈ Γ ⇒ Γ ` x : σ

Γ `M : σ → τ , Γ ` N : σ ⇒ Γ ` (M N) : τ

Γ ∪ {(x, σ)} `M : τ ⇒ Γ ` (λx .M) : σ → τ

Those rules are usually stated in the form of inference rules.

(x : σ) ∈ Γ

Γ ` x : σ
(axiom)

Γ `M : σ → τ Γ ` N : σ

Γ ` (M N) : τ
(→-elimination)

Γ, x : σ `M : τ

Γ ` (λx .M) : σ → τ
(→-introduction)

Let us consider following example statement of a form Γ `M : σ.

{} ` (λf.(λx.(fx))) : (σ → τ)→ (σ → τ)

This statement is derived as follows.

(f, σ → τ) ∈ {(f, σ → τ), (x, σ)}
{(f, σ → τ), (x, σ)} ` f : σ → τ

(x, σ) ∈ {(f, σ → τ), (x, σ)}
{(f, σ → τ), (x, σ)} ` x : σ

{(f, σ → τ), (x, σ)} ` (fx) : τ

{(f, σ → τ)} ` (λx.(fx)) : σ → τ

{} ` (λf.(λx.(fx))) : (σ → τ)→ (σ → τ)

If we turn the derivation upside down, we can see that it is a tree with desired
statement in the root and axioms in the leafs.

New valid inference rules may be produced by finite composition of other valid
inference rules.

Let us consider following rule.

Γ, x : σ `M : τ Γ ` N : σ

Γ ` ((λx .M) N) : τ

Its validity is shown by the following rule composition.

Γ, x : σ `M : τ

Γ ` (λx .M) : σ → τ
Γ ` N : σ

Γ ` ((λx .M) N) : τ
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Let us consider following strange rule.

Γ, x : ρ→ π `M : τ Γ, y : ρ ` N : π

Γ ` ((λx .M) (λ y .N)) : τ

Its validity is shown by the following rule composition.

Γ, x : ρ→ π `M : τ

Γ ` (λx .M) : (ρ→ π)→ τ

Γ, y : ρ ` N : π

Γ ` (λ y .N) : ρ→ π

Γ ` ((λx .M) (λ y .N)) : τ

Generally speaking, inference rules are used for deriving statements of a form
Γ ` M : σ from yet derived statements of such a form (with exception of axiom
rule, which serves as a ”starting point”). Those inference rules are written in the
following form.

Γ1 `M1 : σ1 Γ2 `M2 : σ2 · · · Γn `Mn : σn
Γn+1 ` T(M1,M2, . . . ,Mn) : σn+1

Where T(M1,M2, . . . ,Mn) stands for some specific λ-term that may contain
”meta-variables” M1,M2, . . . ,Mn.

In the example above T(M,N) = ((λx .M) (λ y .N))
Suppose we have derived statements Γ1 ` M1 : σ1,Γ2 ` M2 : σ2, . . . ,Γn `

Mn : σn. Then we are allowed to use the inference rule to derive statement
Γn+1 ` T(M1,M2, . . . ,Mn) : σn+1 .

Nice thing about simply typed lambda calculus is that program M such that
Γ ` M : σ always terminates (provided that implementations of function sym-
bols in Γ also always terminate). This fact is particularly handy for GP — we
can evaluate bred programs without worrying about hanging in the infinite loop
forever.

2.2.4 Tree representations of typed λ-terms

Simply typed λ-calculus as described above is formally called the system λ→-Curry.
Other slightly different formalization is called system λ→-Church. They differ in
that λ→-Curry uses as terms above described untyped terms, whereas λ→-Church
uses slightly modified terms with information about types of variables written in
lambda abstraction along with variable name. Since those systems are proven
to be equivalent, we are not giving this subject much attention here. For more
detailed information on this subject see [10].

In our implementation we also use modified representation of λ-terms storing
information about types. But our representation is more radical than that of
λ→-Church; it stores information about types of all subterms.

Regarding tree representation of such a typed λ-term, most of the time it is
more convenient to understand this information as invisibly sitting in the tree
nodes alongside with visible term symbols.

But as we will see below in the section about inhabitation trees, there are
situations when the explicit type information in the tree representation comes in
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handy. Thus we are presenting following tree representation.

Straightforward approach would be to add to each node a visible type entry
that would be the type of the subterm corresponding to subtree having this node
as the root node.

Approach more suitable for our further purpose is to add a special type node
above each node.

More specifically, let us consider sexpr-tree t corresponding to a λ-term of the
type σ with root r and subtrees s1, . . . , sn. Then corresponding typed sexpr-tree
TT [t] for typed λ-term is obtained from the tree t as follows.

TT[ r

s1 s2 . . . sn

] = σ

r

TT [s1] TT [s2] . . . TT [sn]

We silently suppose here that type information about every subterm is avail-
able.

2.3 Term generating grammar

Inference rules are good for deriving statements of the form Γ ` M : σ, but our
goal is slightly different; we would like to generate many λ-terms M for a given
type σ and context Γ.

Let us start our reasoning about generation of λ-terms with notion of term
generating grammar. We will show how to transform an inference rule into a rule
of term generating grammar. With the appropriate term generating grammar in
hands it is just a simple step to inhabitation trees.

It is not a grammar in classical sense, because we will be operating with in-
finite sets of nonterminal symbols and rules. Technically it it 2-level grammer [11].

Our terminals are symbols used for writing λ-terms.
Our non-terminals are pairs (τ,Γ) where τ ∈ T and Γ is a context.
Our initial non-terminal is S = (σS,ΓS) where σS is desired type of generated

λ-terms and ΓS is building blocks context.

Let us begin with axiom inference rule.

(x : σ) ∈ Γ

Γ ` x : σ

For every non-terminal (σ,Γ) and for every x such that (x : σ) ∈ Γ, there is
following grammar rule.

(σ,Γ) 7−→ x
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Next is →-elimination.

Γ `M : σ → τ Γ ` N : σ

Γ ` (M N) : τ

For every non-terminal (τ,Γ) and for every type σ ∈ T there is following
grammar rule.4

(τ,Γ) 7−→
(

(σ → τ,Γ) (σ,Γ)

)

And finally →-introduction.

Γ, x : σ `M : τ

Γ ` (λx .M) : σ → τ

For every non-terminal (σ → τ,Γ) and for every variable x such that Γ does
not contain any declaration with x as subject there is following grammar rule.

(σ → τ,Γ) 7−→
(
λ x . (τ ; Γ, x : σ)

)

We will demonstrate λ-term generation on example. Again on (λf.(λx.(fx))).
We would like to generate λ-term of a type (σ → τ)→ (σ → τ) with Γ = {}.

((σ → τ)→ (σ → τ), {})

7−→
(
λf.(σ → τ, {(f, σ → τ)})

)
7−→

(
λf.

(
λx. (τ, {(f, σ → τ), (x, σ)})

) )
7−→

(
λf.

(
λx.

(
(σ → τ, {(f, σ → τ), (x, σ)}) (σ, {(f, σ → τ), (x, σ)})

) ) )
7−→

(
λf.

(
λx.

(
f (σ, {(f, σ → τ), (x, σ)})

) ) )
7−→

(
λf.

(
λx.

(
f x

) ) )

Let us consider a general inference rule again.

Γ1 `M1 : σ1 Γ2 `M2 : σ2 · · · Γn `Mn : σn
Γn+1 ` T(M1,M2, . . . ,Mn) : σn+1

The corresponding grammar rule can be summarized as following schema.

(σn+1,Γn+1) 7−→ T
(

(σ1,Γ1) ,(σ2,Γ2) , . . . ,(σn,Γn)

)
4 Terminal symbols for parenthesis and normally space now (for function application

operator) are visually highlighted.
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2.4 Long normal form

Definition. Let Γ `M : σ where σ = τ1 → . . .→ τn → α, n ≥ 0.

1. Then M is in long normal form (lnf ) if following conditions are satisfied.

(a) M is term of the form λx1 . . . xn . f M1 . . . Mm

(specially for n = 0, M is term of the form f).

(b) Each Mi is in lnf .

2. M has a lnf if M =βη N and N is in lnf .

As is shown in [11], lnf has following nice properties.

Proposition 1. If M has a β-nf, then it also has a unique lnf, which is also its
unique βη−1-nf.

Proposition 2. Every B in β-nf has a lnf L such that L�η B.

2.5 Grammar producing λ-terms in lnf

In [11] is shown term generating grammar with following rules (our notation is
used, but we will not highlighted terminals anymore).5

(α,Γ) 7−→ ( f (ρ1,Γ) . . . (ρm,Γ) ) if α ∈ A, (f : ρ1 → . . .→ ρm → α) ∈ Γ

(σ → τ,Γ) 7−→ ( λ x . (τ ; Γ, x : σ) )

The second rule can be replaced by more effective one.

(τ1 → . . .→ τn → α,Γ) 7−→ ( λ x1 . . . xn . (α; Γ, x1 : τ1, . . . , xn : τn) ) if n > 0

This rule packs consecutive uses of the second rule into one use. This is valid
since the use of the second rule is deterministic; it is used if and only if the non-
terminal’s type is not atomic.

Following proposition about this grammar is stated (but not proven) in [11].
Since it is key proposition for our term generating method, we also provide a
proof.

Proposition 3. Let context Γ, λ-term M and type σ be given.
Let  be transitive reflexive closure of 7−→. Then

(σ,Γ) M ⇔ Γ `M : σ and M is in lnf.

5 I was using term generating grammars for term generation on my own before I encountered
with [11], where i happily discovered that Barendregt is using almost identical notation. But his
lnf grammar was more clever then my grammar that was using grammar rules corresponding
to the three basic inference rules.
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Proof.
Let us start with proving
(σ,Γ) M ⇒ Γ `M : σ and M is in lnf
by induction on the length of rewriting chain of (σ,Γ) M .

Let σ = τ1 → . . .→ τn → α(n ≥ 0),
Γ′ = Γ, x1 : τ1, . . . , xn : τn.

(τ1 → . . .→ τn → α,Γ), n > 0 must rewrite to ( λ x1 . . . xn . (α,Γ′) ),
thus (even for n = 0) the chain must go through ( λ x1 . . . xn . (α,Γ′) ).

(α,Γ′) must rewrite to ( f (ρ1,Γ
′) . . . (ρm,Γ

′) )
for some (f, ρ1 → . . .→ ρm → α) ∈ Γ′,
thus the chain must go through ( λ x1 . . . xn . ( f (ρ1,Γ

′) . . . (ρm,Γ
′) ) ).

After that each (ρi,Γ
′) Mi with shorter chain than (σ,Γ) M .

Thus we have from the induction hypothesis for each Mi that
Γ′ `Mi : ρi and Mi is in lnf.

M = ( λ x1 . . . xn . ( f M1 . . . Mm ) ) and each Mi is in lnf ,
thus M is in lnf .

Following derivation shows how to derive Γ `M : σ.

(f, ρ1 → . . .→ ρm → α) ∈ Γ′

Γ′ ` f : ρ1 → . . .→ ρm → α
Γ′ `M1 : ρ1

Γ′ ` ( f M1 ) : ρ2 → . . .→ ρm → α
Γ′ `M2 : ρ2

...

. . .

Γ′ ` ( f M1 . . . Mm−1 ) : ρm → α
Γ′ `Mm : ρm

Γ′ ` ( f M1 . . . Mm ) : α

Γ, x1 : τ1, . . . , xn−1 : τn−1 ` λxn . ( f M1 . . . Mm ) : τn → α
...

Γ, x1 : τ1 ` λx2 . . . xn . ( f M1 . . . Mm ) : τ2 → . . .→ τn → α

Γ ` λx1 x2 . . . xn . ( f M1 . . . Mm ) : τ1 → τ2 → . . .→ τn → α

Now let us prove the opposite direction
Γ `M : σ and M is in lnf ⇒ (σ,Γ) M
by induction on the size of M.

Let M = λx1 . . . xn . f M1 . . . Mm,
σ = τ1 → . . .→ τn → α,
Γ′ = Γ, x1 : τ1, . . . , xn : τn.

Then
(σ,Γ) = (τ1 → . . .→ τn → α,Γ) 7−→ ( λ x1 . . . xn . (α,Γ′) )
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by using the updated second grammar rule.

From Γ `M : σ we have that (f, ρ1 → . . .→ ρm → α) ∈ Γ′ and Γ′ `Mi : ρi.
(This can be easily observed from definition of Γ `M : σ.)

Therefore
( λ x1 . . . xn . (α,Γ′) ) 7−→ ( λ x1 . . . xn . ( f (ρ1,Γ

′) . . . (ρm,Γ
′) ) )

by using the first rule.

Each Mi is in lnf , is smaller in size then M and Γ′ `Mi : ρi;
therefore we have from the induction hypothesis that (ρi,Γ

′) Mi.

Therefore (σ,Γ) ( λ x1 . . . xn . ( f M1 . . . Mm ) ).

This means that we can use this grammar to generate all λ-terms M in lnf
with desired type σ from building blocks context Γ.

2.5.1 Benefits of generating λ-terms in lnf

By generating λ-terms in lnf we avoid generating λ-terms M ,N such that M 6= N ,
but M =βη N . In other words, we avoid generating two programs with different
source codes, but performing the same computation.

Every λ-term M such that Γ `M : σ has its unique lnf L, for which L =βη M .
Therefore the computation performed by λ-term M is not omitted, because it is
the same computation as the computation performed by λ-term L.

Generating λ-terms in lnf is even better than generating λ-terms in β-nf .
Since lnf is the same thing as βη−1-nf , every λ-term in lnf is also in β-nf .

This comes straight from the definition of βη−1-nf , but one can also see it from
observing method for generating terms in β-nf . As is shown in [11], this method
is obtained simply by replacing the first grammar rule by slightly modified rule,
resulting in the following grammar.

(π,Γ) 7−→ ( f (ρ1,Γ) . . . (ρm,Γ) ) if (f : ρ1 → . . .→ ρm → π) ∈ Γ

(σ → τ,Γ) 7−→ ( λ x . (τ ; Γ, x : σ) )

The difference lies in that f ’s type is no longer needed to be fully expanded
(π ∈ T instead of α ∈ A). This makes the grammar less deterministic, resulting
in a bigger search space. The new rule is generalization of the old one, thus all
terms in lnf will be generated, along with many new terms in β-nf that are not
in lnf .

By generating λ-terms in lnf we avoid generating λ-terms M ,N such that
M 6= N and M =η N ; but by generating in β-nf we do not avoid it.

The disadvantage of the lnf , as the name suggests, is that it is long. Terms
in lnf are said to be fully η-expanded [11]. Relevant property of η-reduction is
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that it always shortens the term that is being reduced be it. And conversely,
η-expansion prolongs.

(λx . (M x))→η M if x 6∈ FV (M)

Now we show that for every λ-term M every sequence of η-reductions is finite
and leads to unique η-nf N .

1. Every application of η-reduction shortens the term. Since every term has
finite size, this process must end at some point. Thus every λ-term has
η-nf .

2. Since η-reduction is Church–Rosser, η-nf is unique (see [9]).

So we can take every generated λ-term M in lnf and transform it to shorter
term in η-nf . The question is whether it remains in β-nf , thus being in βη-nf .
The answer is yes; it can be proven by showing that no new β-redex is created
by η-reduction.

Proposition 4. Let P be in β-nf and P →η Q. Then Q is in β-nf.

Proof. For better clarity let us show the η-reduction and β-redex using trees.
η-reduction:

λx

@

M x

→η M

And β-redex:
@

λx

M

N

Let us assume that P →η Q creates a new β-redex B in Q.
Since η-reduction only destroys and never creates function applications (i.e.

@), the root @ of B must be present in P . But since P contains no β-redex, the
left subterm L of this root @ is not λ-abstraction. Only possible way for L to be
changed by →η into a λ-abstraction is that L is the reduced subterm (so that L
is changed for its subterm). But that is in contradiction with P not containing
any β-redex, because it would cause L be a λ-abstraction.

Notable property of lnf and βη-nf is that there is bijection (i.e. one-to-one
correspondence) of the set of simply typed λ-terms in lnf and the set of simply
typed λ-terms in βη-nf .

Proposition 5. Reduction to η-nf is bijection between the set of simply typed
λ-terms in lnf and the set of simply typed λ-terms in βη-nf.
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Proof. Since reduction to η-nf always leads to an unique term, it is a function.
In previous proposition is shown that η-reduction of lnf leads to a term in βη-nf .

In order to show that a function is bijection it is sufficient to show that it is
both injection and surjection.

Suppose it is not injection.
So there must be M1,M2 in lnf such that M1 6= M2 and N in βη-nf such that

M1 �η N , M2 �η N . Therefore M1 =η M2, so M1 =βη−1 M2. This contradicts
with M1,M2 being distinct lnf s.

Every M in β-nf has a lnf N such that N �η M (proposition from 2.4).
Term M in βη-nf is in β-nf , thus it has desired lnf N which reduces to it.

Therefore it is surjection.

Suppose we have systematic (i.e. gradually generating all terms, but no term
twice) method for generating terms in lnf , we may transform it to systematic
method for generating terms in βη-nf by simply reducing each generated term to
its η-nf .
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2.6 Inhabitation tree

Now we introduce inhabitation tree; structure slightly different from inhabitation
machine, which was introduced by Barendregt[11]. We can think about inhabita-
tion tree as about unfolded inhabitation machine. Inhabitation tree approach is
further refinement of the term generating grammar approach, which is too much
textual. Whereas inhabitation tree approach aims at tree structure of λ-terms.

Definition. Let context Γ and type σ be given. Inhabitation tree for (σ,Γ), de-
noted as IT(σ,Γ), is a rooted possibly infinite tree that is recursively defined as
follows.

If σ = α such that α ∈ A, then
IT(σ,Γ) :=

α

f1

IT(ρ11,Γ) . . . IT(ρ1m1
,Γ)

. . . fk

IT(ρk1,Γ) . . . IT(ρkmk
,Γ)

where
{ f1 : ρ11 → . . .→ ρ1m1

→ α , . . . , fk : ρk1 → . . .→ ρkmk
→ α}

= { f : ρ1 → . . .→ ρm → α | (f, ρ1 → . . .→ ρm → α) ∈ Γ }.

Otherwise, for σ = τ1 → . . .→ τn → α such that n > 0, α ∈ A
IT(σ,Γ) :=

τ1 → . . .→ τn → α

λx1 . . . xn

IT(α; Γ, x1 : τ1, . . . , xn : τn)
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Let us discuss this definition in grater detail. An inhabitation tree has two
kinds of nodes.

1. Type node (or OR-node).

This kind of node contains type.

2. Symbol node (or AND-node).

This kind of node contains constant name, variable name
or λ-head — non-empty finite sequence of variable names.

Following observation clarifies the alternation of node kinds.

1. The root of Inhabitation tree for (σ,Γ) is type node with σ as type.

2. All type nodes have as child nodes only symbol nodes.

3. All symbol nodes have as child nodes only type nodes.

There are two cases of σ — atomic type and function type.

First case is atomic type, i.e., σ = α where α ∈ A.
For every (f, ρ1 → · · · → ρm → α) ∈ Γ there is a child symbol node containing

constant or variable name f . This symbol node containing f has m child subtrees
corresponding to IT(ρ1,Γ), . . . , IT(ρm,Γ).

Therefore specially for m = 0 node containing f is a leaf of the inhabitation
tree.

Compare this case with corresponding grammar rule.

(α,Γ) 7−→
(

f (ρ1,Γ) . . . (ρm,Γ)

)
Second case is function type, i.e., σ = τ1 → · · · → τn → α where n ≥ 1, α ∈ A.

For every i ∈ {1, . . . , n} we create new variable name xi that is not yet included
in context Γ as variable or constant name.

There is one and only one child symbol node of function type node containing
λ-head λx1 . . . xn, which stands for sequence of variable names (x1, . . . , xn). This
symbol node containing λx1 . . . xn has one and only one child subtree correspond-
ing to IT(α; Γ, x1 : τ1, . . . , xn : τn).

Compare this case with corresponding grammar rule.

(τ1 → · · · → τn → α,Γ) 7−→
(
λx1 . . . xn. (α; Γ, x1 : τ1, . . . , xn : τn)

)

Let us consider following (σ,Γ) as a simple example:
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σ = B→ B→ B
Γ ={ true : B

, nand : B→ B→ B }

This particular (σ,Γ) results in the following tree:

B→ B→ B

λx1x2

B

true nand

B

· · ·

B

· · ·

x1 x2

Second example features our well known example:

σ = (σ → τ)→ σ → τ

Γ ={}

Which results in following tree:
(σ → τ)→ σ → τ

λ f x

τ

f

δ

x
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2.6.1 And-or tree and searching in Inhabitation tree

Let us consider following definition of and-or tree.

Definition.

1. And-or tree is a rooted possibly infinite tree with every node labeled as
either and-node or or-node.

2. T ′ solves and-or tree T if T ′ satisfy following conditions.

(a) T ′ is a finite tree, subgraph of T .

(b) The root of T ′ is the root of T .

(c) Each and-node in T ′ has all the child nodes as in T .

(d) Each or-node in T ′ has precisely one child node.

Let us now consider following labeling of Inhabitation tree.

• Type nodes are labeled as or-nodes.

• Symbol nodes are labeled as and-nodes.

This labeling has following justification.

Selection of exactly one child node in type node corresponds to selection of
exactly one grammar rule in order to rewrite nonterminal symbol.

Selection of all the child nodes in symbol node corresponds to rewriting all the
nonterminal symbols in string that is being generated. Or put in different words,
it corresponds to filling all the slots for arguments with values.
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2.6.2 Generating terms in lnf by solving inhabitation
tree

The motivation for defining solving and-or tree the way we did is that solution
trees of IT(σ,Γ) are typed sexpr-trees representing all λ-terms M in lnf such that
Γ `M : σ.

Proposition 6. (Correctness)
If sexpr-tree M ′ solves IT(σ,Γ),
then M ′ represents λ-term M in lnf such that Γ `M : σ.

Proof. We will prove following statement from which follows the rest by proposi-
tion 3: If sexpr-tree M ′ solves IT(σ,Γ), then M ′ represents λ-term M such that
(σ,Γ) M .

By induction on size of M ′.

If σ = α such that α ∈ A, then
M ′ = α

f

M ′
1 . . . M ′

m

For some f : ρ1 → . . .→ ρm → α ∈ Γ.

One can easily see that M ′
i solves IT(ρi,Γ).

Thus by induction hypothesis we get that
M ′

i represents λ-term Mi such that (ρi,Γ) Mi.

(σ,Γ) 7−→ ( f (ρ1,Γ) . . . (ρm,Γ) ), thus (σ,Γ) ( f Mi . . . Mi ).
Since M ′ represents ( f Mi . . . Mi ), the proof for the first case is complete.

Otherwise, for σ = τ1 → . . .→ τn → α such that n > 0, α ∈ A
M ′ = τ1 → . . .→ τn → α

λx1 . . . xn

N ′

Again, one can easily see that N ′ solves IT(α; Γ, x1 : τ1, . . . , xn : τn).
Thus by induction hypothesis we get that
N ′ represents λ-term N such that (α; Γ, x1 : τ1, . . . , xn : τn) N .

(τ1 → . . .→ τn → α,Γ) 7−→ ( λ x1 . . . xn . (α; Γ, x1 : τ1, . . . , xn : τn) ),
thus (σ,Γ) ( λ x1 . . . xn . N ).
Since M ′ represents ( λ x1 . . . xn . N ), the proof is complete.
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Proposition 7. (Completeness)
If M is λ-term in lnf such that Γ `M : σ,
then there exists exactly one sexpr-tree M ′ such that M ′ represents M and M ′

solves IT(σ,Γ).

Proof. We will prove following statement from which follows the rest by propo-
sition 3: If M is λ-term such that (σ,Γ)  M , then there exists exactly one
sexpr-tree M ′ such that M ′ represents M and M ′ solves IT(σ,Γ).

By induction on the length of rewriting chain of (σ,Γ) M .

If σ = α such that α ∈ A, then:
(σ,Γ) must rewrite to ( f (ρ1,Γ) . . . (ρm,Γ) ).
And there is only one possibility for f since M is given.
M = ( f M1 . . . Mm ) where (ρi,Γ) Mi.

From induction hypothesis we have that there exists exactly one sexpr-tree
M ′

i such that M ′
i represents Mi and M ′

i solves IT(ρi,Γ).

In order to construct M ′ solving IT(σ,Γ) we have only one possibility since
we know the right f to take:

M ′ = α

f

M ′
1 . . . M ′

m

Otherwise, for σ = τ1 → . . .→ τn → α, (n > 0):

(σ,Γ) must rewrite to ( λ x1 . . . xn . (α; Γ, x1 : τ1, . . . , xn : τn) ).
M = ( λ x1 . . . xn . N ) where (α; Γ, x1 : τ1, . . . , xn : τn) N .

From induction hypothesis we have that there exists exactly one sexpr-tree
N ′ such that N ′ represents N and N ′ solves IT(α,Γ′).

In order to construct M ′ solving IT(σ,Γ) in non-atomic σ we have only one
possibility:

M ′ = τ1 → . . .→ τn → α

λx1 . . . xn

N ′
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2.6.3 In defense of inhabitation trees

It may seem that we are overthinking the problem by introduction of this new
structure, whereas it would be sufficient to use the term generating grammars
instead.

I see two reasons why inhabitation tree is useful concept.

1. The first reason is rather subjective. In my opinion, it simplifies the problem
to be better graspable. My arguments are following:

(a) It reduces the unpleasant fact that term generating grammars are not
grammars in the standard sense (but instead 2-level-grammars).

(b) It brings the problem to its more natural domain, from (textual) gram-
mars to (syntactical) trees.

(c) We may think about the whole structure of generating at once since
the whole tree, although usually infinite, is fairly simple structure of
alternating layers of and and or nodes.

(d) It enables us to ask such questions as: What would be usage of inhab-
itation trees with number labeled edges coming from or-nodes?.

2. We can think about the inhabitation tree as about some kind of search
space. But another view is also possible: We can think about it as about
collection of typed lambda terms that are generable by that inhabitation
tree.

This is even more visible when we introduce concept of an incomplete in-
habitation tree; such a tree is created by omission of some subtrees with
and-node roots (i.e., those accessible by or edge). Finite incomplete inhabi-
tation tree corresponds to finite collection of typed λ-terms. In very natural
sense we can call it a typed multiterm — a collection of typed terms forming
one tree where those terms share the common parts.

Thus the process of term generation is bidirectional — from (incomplete)
inhabitation tree (seen as collection) we may obtain its element by solving
it. But we may also take collection of typed trees and compress them
into one tree by sharing their common parts, which happens to be the
(incomplete) inhabitation tree that can be solved precisely by those terms
which constructed it.

In the next chapter we will use A*-algorithm together with inhabitation tree
ideas to perform systematic generation and other kinds of generation of λ-terms.
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3. Design of our system

In this chapter we will describe our system trying to dive into implementation
details as little as possible. Some of those details will be revealed in the next
chapter devoted to the implementation.

This chapter will be presented in the mix between the mathematical termi-
nology described in the previous chapter and the algorithmic terminology.

We can summarize our approach to design of the system for Genetic program-
ming with types by its main design goals:

• It should eliminate the closure constrain of standard GP (see 1.2).

• It should be generalization of the standard GP described in 1, by which is
meant that for building blocks satisfying constrains of standard GP there
should be simple setup of control parameters of the system which will make
the system behave in precisely the same way as the standard GP behaves.

• It should utilize the theory around typed λ-calculus.

3.1 Individuals and Building blocks

We have two competing variants for representing individuals — @-tree and sexpr-tree
(see 2.1.6).

Individuals generated by solving inhabitation tree are sexpr-trees, which can
be easily translated to @-trees.

Before we start generating we do one important trick. Suppose we want
individuals of the type σ = τ1 → . . .→ τn → α from building blocks context Γ.

All our individuals will have form λx1 . . . xn .M . But since those variables
are same for all individuals, we may do following trick.

Instead of generating individuals for (τ1 → . . .→ τn → α,Γ) we generate indi-
viduals for (α; Γ, x1 : τ1, . . . , xn : τn) and remember to add the λ-head λx1 . . . xn
to each individual when evaluating it.

This trick has two reasons:

1. Later in this chapter we will discuss problems occurring with variables when
performing subtree swap in order to perform crossover. We solve those prob-
lems by performing abstraction elimination, which eliminates all occurences
of variables and lambda-abstractions in a λ-term. But those problems are
caused by local variables. Since x1 . . . xn are common for all λ-terms, it is
valid to exclude them from this elimination. Since abstraction elimination
prolongs size of λ-terms it is beneficial to lessen the effect of abstraction
elimination in this way.

2. It also makes our method compatible with standard GP, where variables
are treated as ordinary element of the set T and no λ-abstraction is used.
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This ensures that S-expressions will be generated for Γ satisfying constrains
of standard GP and that abstraction elimination will have no effect on such
individuals.

3.2 Generating individuals

Input for term generating algorithm is pair (σ,Γ) where:

• σ is desired type of each generated individual.

• Γ is building blocks context.

Each generated λ-terms M must satisfy Γ `M : σ.

We generate terms in long normal form. This is achieved by solving inhab-
itation tree for (σ,Γ). The main design choice behind our approach to solving
inhabitation trees is ability to be variable enough to enable choice between sys-
tematic and ramped half-and-half (described in 1.3) methods of generating terms
by choice of simple search strategy.

Let us explain what is meant by systematic method of generating terms.
Systematic way of solving inhabitation tree corresponds to generating terms

in their long normal forms in order from smallest to largest in number of symbols
and λ-heads.

We will achieve this by using A* algorithm.

3.2.1 A* algorithm

A* is a general informed search algorithm used for finding least-cost path from a
given start state to some goal state in a state space. According to [13] A* is the
most widely known form of best-first search.

By state space is meant oriented weighted graph with states as vertices and
edges labeled with numbers corresponding to distance or cost. Edge from si to
sj means that state sj is reachable from state si in one step with cost dist(si, sj).
In pseudocode we will refer to set of states reachable from state s in one step as
to s.nexts().

Typically we use A* algorithm to find path from one specific start state to
another specific goal state. But sometimes we can be interested only in finding
a goal state which is specified by some isGoal predicate give to the algorithm as
input (and the state space may contain many such goal states). This later variant
corresponds to our situation, so we will continue by describing this variant.

As A* traverses the state space, it follows a path of the lowest expected total
cost. The expectation is based on heuristic function which for state s predicts
distance to the nearest goal state. It uses a priority queue of states as its crucial
data structure. In this queue the priority of state s is the total expected cost of
the path from start state going through s and continuing to the nearest goal state.

Here follows A* algorithm written in pseudocode:
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function A*( start , isGoal , heuristic )
open← empty priority queue
closed← empty set

start.G = 0
start.F = 0 + heuristic( start )

open.insert( start )

while ¬ open.isEmpty() do
state← open.popStateWithLowestF()

if isGoal( state ) then
return state

closed.insert( state )

for next ∈ state.nexts() do
newG← state.G + dist(state,next)

if (next 6∈ open ∧ next 6∈ closed) ∨ newG < next.G then

next.G ← newG
next.F ← newG+ heuristic( next )

if next 6∈ open then
open.insert( next )

return no-reachable-goal

Now we will modify this general A* algorithm so it will be more suited for
our needs. We want following properties:

• The state space is a tree.

• dist(si, sj) = 1

• We do not want to find one, but n goal states.

For state space which is a tree the condition (next 6∈ open∧ next 6∈ closed) is
always true, since it is possible to come to a state only from its parent state. This
fact results in simplification of algorithm’s code and behavior; we may completely
omit the closed set and the checks in the for loop.

Those changes result in the following code:
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function Our-A*( start , n , isGoal , heuristic )
open← empty priority queue
results← empty set

start.G = 0
start.F = heuristic( start )

open.insert( start )

while ¬ open.isEmpty() do
state← open.popStateWithLowestF()

if isGoal( state ) then
results.insert( state )
if |results| = n then

return results

for next ∈ state.nexts() do
next.G ←state.G+ 1
next.F ←next.G+ heuristic( next )
open.insert( next )

return results

The most important part of A* algorithm is the heuristic function. A heuristic
function must be admissible in order to make A* algorithm find the shortest
possible path.

A heuristic function h is said to be admissible if it satisfies following condition
for every state s:

h(s) ≤ h∗(s)

where h∗(s) is the true length of the shortest path from s to the nearest goal
state.

In other words, a heuristic function is admissible if it is optimistic.

3.2.2 Our state space

In order to describe our state space to search in let us introduce extended version
of our tree representation for typed λ-terms from 2.2.4. This extension consists
in adding a new kind of leaf node (σ,Γ) standing for unfinished tree of a type σ
with context Γ to use as set of building blocks.

Initial start states are all of a form ”one node tree (σ,Γ)” since we are trying
to generate a typed λ-term of a type σ from building blocks Γ.
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A tree with no unfinished leaf is considered as final state.

We will define our state space inductively by specifying algorithm for obtaining
successors of a state.

A non-final state must have one or more unfinished leafs. One of those unfin-
ished leafs is selected. It is the first one found by depth-first search (from the root
of a state tree) i.e., the leftmost unfinished leaf (if we consider that tree written
as expression).

Let (σ,Γ) be the selected leaf. Successor state is constructed by replacing this
leaf by new subtree. We must distinguish two cases of σ : Atomic type σ and
function type σ.

Atomic type σ = α, α ∈ A.
For atomic σ there are as many successors as there are members of Γ of a

form (f, ρ1 → · · · → ρm → α), where m ≥ 0. In other words all the members of
Γ of a type α or of a type for function which returns α.

For each (f, ρ1 → · · · → ρm → α) ∈ Γ, where m > 0 the new subtree which
will replace (σ,Γ) has following form:

α

f

(ρ1,Γ) (ρ2,Γ) . . . (ρm,Γ)

And for m = 0:
α

f

Function type σ = τ1 → · · · → τn → α where n ≥ 1, α ∈ A.
For function type σ there is exactly one successor.
For every i ∈ {1, . . . , n} we create new variable name xi which is not yet used

anywhere in the whole tree.
The new subtree which will replace (σ,Γ) has following form:

τ1 → · · · → τn → α

λx1 . . . xn

(α,Γ ∪ {(x1, τ1), . . . , (xn, τn)})

We should discuss that it is correct to have as successors of a state those
created by expansion of the leftmost unfinished leaf (in contrast with more broad
successor set where any unfinished leaf may be expanded). What we need to show
is that no final state will be omitted by the method and that there is no shorter
path omitted.

One can see that it is correct by considering that the order of expanding
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unfinished leafs is irrelevant since expansion of each unfinished leaf is independent
from expansion of any other unfinished leaf (up to renaming of variables which
is irrelevant).

Every unfinished leaf of a state must be replaced by tree containing no unfin-
ished leafs in order to be final state. But since expansion of an unfinished leaf has
no impact (besides new variable names) on expansion of other unfinished leafs
we may choose the order of expansions arbitrarily.

We prefer this variant because:
• It has smaller or equal number successors for each state, i.e. smaller or

equal branching factor.

• It makes the state space a tree, in contrast with the naive state space which
is not a tree.

3.2.3 Our heuristic function

A heuristic function takes as input a state and returns as output an estimation
of number of steps needed to get to a final state by the shortest possible path.

Our heuristic function is a simple one: The number of unfinished leafs in the
state tree.

This heuristic function is admissible because every unfinished leaf must be at
least once expanded to become final.

3.2.4 Further improvements

We may easily put all deterministic expansion steps into one step — by which we
mean the lambda head expansion. This could be done when expanding atomic
type by also expanding its non-atomic arguments. This would result in that only
atomic types wold by in unfinished leafs. It is important to accordingly change
the dist in A* which is now 1 generally.

It is also worth mentioning that dist 1 is also for lambda heads with long list
of variable names in the current specification — we do not bother ourselves with
this detail. But when it is not the desirable behavior it is very easy to change by
using mor complicated dist than 1.

3.2.5 Search strategy

Now we will describe further modification of the A* algorithm which is generaliz-
ing it enough to enable use of ramped half-and-half term generating method and
other term generating methods.

It is done by adding one more input argument for the algorithm. This addi-
tional argument is a search strategy whose purpose is to determine which succes-
sor states of all possible successor states will be added to the priority queue, i.e.,
a search strategy is there to filter out some successor states from state.nexts().
This filtering may be non-deterministic. It is based on the depth of expanded
unfinished leaf and on properties of the newly added subtree, e.g., whether the
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newly added subtree contains one or more unfinished leafs (so it corresponds to
non-terminal) or not (so it corresponds to terminal).

By depth we really mean bdepth/2c, because our formal state trees contain
those type nodes above each symbol node.

In previous situation where there is no filtering of states involved we know
that if queue becomes empty, then we have exhaustively searched all possible
states.

But since filtering is involved this is no longer true. Therefore, if the queue
becomes empty before the required number of terms is generated, then the gen-
erating process is restarted and it continues to generate terms.

We also enable strategy to have some internal state which is initialized (pos-
sibly non-deterministically) each time the generating process restarts.

Hopefully those changes will be clarified by the following pseudocode:

function A*-with-strategy( start , n , isGoal , heuristic , strategy )
results← empty set

while |results| < n do
strategy.init()

open← empty priority queue

start.G = 0
start.F = heuristic( start )

open.insert( start )

while ¬ open.isEmpty() do
state← open.popStateWithLowestF()

if isGoal( state ) then
results.insert( state )
if |results| = n then

return results

nexts← strategy.filter( state.nexts() , state.depth() )

for next ∈ nexts do
next.G ←state.G+ 1
next.F ←next.G+ heuristic( next )
open.insert( next )

return results
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Let us show examples of search strategies. They are described by describing
their filter(nexts, depth) and init() methods1 . Again, in order to avoid confu-
sion, let us stress that depth is really bdepth/2c since our formal states contain
above each symbol node a type node.

Systematic strategy

The previous systematic behavior may be obtained by trivial filter function
which returns all nexts. Systematic strategy needs no internal state, therefore
init is doing nothing.

Ramped half-and-half strategy

In the init are randomly (uniformly) initialized two variables of the strategy
internal state:
• isFull - A boolean value, determining whether full or grow method will be

performed.

• d - A integer value from {2, . . . , Dinit}, where Dinit is predefined maximal
depth (e.g. 6).

The method filter(nexts, depth) returns precisely one randomly (uniformly)
selected element from a subset of nexts (or zero elements if nexts is empty). This
means that the queue always contains only one (or zero) state.

The subset to select from is determined by depth, d and isFull.

Those elements of nexts whose newly added subtree contains one ore more
unfinished leafs are regarded as non-terminals, whereas those whose newly added
subtree contains no unfinished leaf are regarded as terminals.

If depth = 0, then the subset to select from is set of all non-terminals of nexts.
If depth = d, then the subset to select from is set of all terminals of nexts.

In other cases of depth it depends on value of isFull.
If isFull = true, then the subset to select from is set of all non-terminals of

nexts.
If isFull = false, then the subset to select from is whole nexts set.

Geometric strategy

We can see those two previous strategies as two extremes on the spectrum of
possible strategies.

Systematic strategy filters no successor state thus performing exhaustive search
resulting in discovery of n smallest terms in one run.

On the other hand, ramped half-and-half strategy filters all but one successor
states resulting in degradation of priority queue to ”fancy variable”. And each

1It is also needed to add forceUniqueness() boolean predicate to the strategy since Koza’s
ramped half and half requires uniqueness. Let us skip this step here in this explanation,since
it can be easily implemented but adds lot of unnecessary distraction. May the reader forgive.
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term is generated in its own run.

Geometric strategy is simple yet fairly effective term generating strategy some-
where in the middle of this spectrum.

It is parameterized by parametr q ∈ (0, 1), its default well-performing value
is q = 0.75.

For each element of nexts it is probabilistically decided whether it will be
returned or omitted. A probability p of returning is same for all elements, but
depends on depth. It is computed as follows:

p = qdepth

This formula is motivated by idea that it is important to explore all possible
root symbols, but as the depth increases it becomes less ”dangerous” to omit an
exploration branch.

We can see this by considering that this strategy results in somehow undis-
ciplined A* search. With each omission we make the search space smaller. But
with increasing depth these omissions have smaller impact on the search space,
i.e., they cut out lesser portion of the search space.

Another slightly esoteric argument supporting this formula is that ”root parts”
of a program usually stand for more crucial parts with radical impact on global
behavior of a program, whereas ”leaf parts” of a program usually stand for less
important local parts (e.g. constants).

It also plays nicely with the idea that ”too big trees should be killed”.

Systematic strategy does not have an internal state, thus init does nothing.

3.2.6 Final remarks

We should mention that since simply typed lambda calculus is equivalent to impli-
cational fragment of intuitionistic logic it wold be possible to do term generation
by prover for this logic. But logic prover is concerned with finding one proof of a
difficult proposition, whereas types usually tend to be easy propositions but we
need enormous amount of them. So this two fields, although equivalent in theory
do not have equivalent goals in practice.

We have also tried generation directly from grammar rules corresponding to
basic inference rules – we did it before encountering the work of [11], but since
this has two drawbacks we have not supported the implementation of the former
term generator to the actual state of source code.

Those drawbacks are that it is not in normal form and that it is not ob-
vious which type shoud by added in the grammar rule corresponding to the
→-elimination.
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3.3 Crossover

Design goal behind our approach to crossover operation is to try to generalize
standard tree swapping crossover. This is not because of dislike of more special-
ized crossovers; it comes from systematic approach for exploring the domain of
typed functional GP — thus I would like to start with the most common one.

The crossover operation in standard GP is performed by swapping randomly
selected subtrees in each parent S-expression (see 1.6).

For typed lambda terms two difficulties arise: Types and variables.

We will show how to crossover typed λ-term trees in both @-tree and sexpr-
tree notation.

As in standard GP our crossover will be performed by swapping two subtrees.
But now with constraint that both subtrees have the same type. This is discussed
in grater detail in 3.3.2.

Variables bring more difficulties then types do. This problem arises from
variables that are free in subterms corresponding to swapped subtrees.

Following example illustrates the problem. Let us have these two parent trees
with selected nodes in bold.

λx1

f

λx2

g

x2 c

x1

λx1

h

x1 x1

The swap of subtrees results in following trees:

λx1

f

λx2

x1

x1

λx1

h

x1 g

x2 c

The problem is that variable x2 in second tree is not bound by any λ-head and
since it is not element of Γ, the second tree is not well-typed λ-term.

First approach tried at this problem was to repair the broken term, but since
this method is not currently implemented we will describe it in just a few words.
If the moved free variable ends in the scope where is defined variable with the
same name and type, then it is OK. If it is not this case, we may rename this
variable to some other variable ”visible” in its new scope if such a variable has
the same type. If there is no such a suitable variable we may generate new value

44



to replace the variable by term generating method.
As you can see, this is not much elegant solution.
But we can avoid dealing with this problem by avoiding use of variables. This

can be achieved by process called abstraction elimination.

3.3.1 Abstraction elimination

Abstraction elimination is a process of transforming an arbitrary λ-term into λ-
term that contains no lambda abstractions and no bound variables. The newly
produced λ-term may contain function applications, free symbols from former
λ-term and some new symbols standing for combinators S, K and I.

Those combinators are defined as:

S = λ f g x . f x (g x)

K = λx y . x

I = λx . x

Let us describe transformation Æ performing this process.2

Æ[x] = x

Æ[ (M N) ] = (Æ[M ] Æ[N ])

Æ[λx . x] = I

Æ[λx .M ] = (K Æ[M ]) if x 6∈ FV(M)

Æ[λx . (λ y .M)] = Æ[λx . Æ[λ y .M ]] if x ∈ FV(M)

Æ[λx . (M N)] = (S Æ[λx .M ] Æ[λx .N ]) if x ∈ FV(M) ∨ x ∈ FV(N)

This is simple version of this process. More optimized version, in the means
of the size of resulting term and its performance is following one, presented in [12].

This version operates with more combinators:

B = λ f g x . f (g x)

C = λ f g x . f x g

S′ = λ c f g x . c (f x) (g x)

B∗ = λ c f g x . c (f (g x))

C′ = λ c f g x . c (f x) g

2In our implementation we must also deal with types, because our individuals are annotated
with types. But since this process is fairly straightforward but cumbersome to describe, we
will skip explaining it here. Reader interested in seeing it can see the source code of our
implementation.
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And the transformation can be written as follows.

Æ[x] = x

Æ[ (M N) ] = (Æ[M ] Æ[N ])

Æ[λx .M ] = A[x; Æ[M ]]

A[x;x] = I

A[x; y] = (K y)

A[x; (M N) ] = Opt[ S (A[x;M ]) (A[x;N ]) ]

Opt[ S (K M) (K N) ] = K (M N)

Opt[ S (K M) I ] = M

Opt[ S (K M) (B N L) ] = B∗ M N L

Opt[ S (K M) N ] = B M N

Opt[ S (B M N) (K L) ] = C′ M N L

Opt[ S M (K N) ] = C M N

Opt[ S (B M N) L ] = S′ M N L

As is stated in [12], the biggest disadvantage of this technique is that the
translated term is often much larger than in its lambda form — the size of the
translated term can be proportional to the square of the size of the original term.

But the advantage is also tempting — no need to deal with variables and
lambda heads.

3.3.2 Typed subtree swapping

First thing to do in standard subtree swapping is to select random node in the
first parent.

We modify this procedure so that we allow selection only of those nodes with
such a type that there exists a node in the second parent with the same type.

Standard subtree swapping crossover as a first thing selects whether the se-
lected node will be inner node (usually with probability pip = 90%) or leaf node
(with probability 10%).

We are in a more complicated situation, because one of those sets may be
empty, because of allowing only nodes with possible ”partner” in the second
parent. Thus we do this step only if both sets are nonempty.

After selecting a node in the first parent we select node in the second parent
such that type of that node must by the same as the type of the first node. Again,
this may eliminate the ”90-10” step of first deciding whether the selected node
will be internal node or leaf node.

When both nodes are selected we may swap the trees.

If the abstraction elimination was performed, then since the trees are of the
same type and there are no variables to be moved from their scope, the offspring
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trees are well typed.

Both sexpr-tree and @-tree are able to be crossed by this mechanism. But
@-tree has more possibilities then @-tree. This comes from the fact that every
subtree of the sexpr-tree corresponds to a subtree of @-tree, but there are sub-
trees of @-tree that do not correspond to a subtree of a sexpr-tree.

Following example should clarify this.
@

@

f x

y

f

x y

In @-tree, f is leaf thus subtree, whereas in sexpr-tree it is internal node thus
not a subtree.

Another nice property of sexpr-trees with no lambdas is that they are the
same representation as S-expressions used by standard GP.

Again, similarly as for standard version, a maximum permissible depthDcreated

for offspring individuals is defined (e.g. Dcreated = 17). If one of the offspring has
greater depth than this limit, then this offspring is replaced by the first parent
in the result of the crossover operator. If both offspring exceeds this limit, than
both are replaced by both parents.

For @-tree the Dcreated must be larger since @-tree (without lambdas) is a
binary tree. This enlargement is approximately proportionate to average number
of function arguments. We use generous Dcreated = 17× 3.
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4. Implementation

In this chapter we will briefly discus some parts of the implementation of our
system. Some previous knowledge of Haskell is assumed, but one can freely skip
this chapter since it is not crucial for the overall message of this thesis.

Our system is implemented in functional language Haskell. Program imple-
menting it is called Fishtron. It runs as a simple server application and its GUI
is accessible through web browser.

Evaluation of individuals is performed by translating them from λ-terms into
Haskell programs which are evaluated in the Haskell interpreter Hint accessible
in the code as Interpreter monad.

Each problem definition typically consists of two Haskell source code files.
First file (usually called Problem.hs) contains problem definition involving such
things as desired type of individual, context of building blocks, fitness function
implementation and various control parameters like term generating method,
crossover, default number of runs, generations, population size etc.

Those functions or constants of building block context that are not part of
the standard Haskell Prelude1 need to be defined in the second file (usually called
Funs.hs).

After start of the program one can access the interface by pointing a browser
to http://localhost:3000. Here is simple form where registered problems are
listed. Beside problem selection one can also change some control parameters.
After hitting the ”start” button evolution begins. From that point until the end
of the running experiment, the front-end JavaScript program periodically asks
server for new run information. Server makes this information available at the
end of each generation. This information contains various data: Haskell and
JavaScript source codes of the best individual, some statistical data about the
just evaluated generation, standard output of the server program, etc.

These data are immediately available in the form of continuously updated
graphs and if the phenotype JavaScript file is present for the problem, then is al-
so available immediate presentation of the best individual from each generation.
JavaScript functions standing for best individuals are also immediately accessible
through JavaScript console, e.g. for debugging purposes.

Now let us move our attention to the architecture of the evolution engine.
Various dirty parts of the outside world (such as textual output, communication
with front-end, access to random number generator) are packed into Eva state
monad defined in Eva.hs.

Core of the evolution engine (defined in GP Core.hs) is done so it enables
various structures to be evolved - such as sexpr-trees, @-trees or even boolean
lists of fixed length as to support beside GP also Genetic Algorithms.

1 A standard module imported by default into all Haskell modules.
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This is possible due to following type classes.

class Gene term opt where

generateIt :: Int -> opt -> Eva [term]

class Muta term opt where

mutateIt :: opt -> term -> Eva term

class Cros term opt where

crossIt :: opt -> term -> term -> Eva (term,term)

class Evolvable term a gOpt mOpt cOpt where

evolveIt :: RunInfo -> Problem term a gOpt mOpt cOpt

-> Eva (term,FitVal,Maybe Int)

Put simply, if we define instances for Gene, Muta and Cros, then we get
instance of Evolvable.

Gene correspond to individual generating method for structure term parametrized
by option opt. Analogically for mutation and crossover.

Instances of those three type classes are located in the file GP Data.hs.
We will skip deeper explanation of this topic now.

One technical detail that I think is worth mentioning here is a trick involved
in evaluation of Haskell programs corresponding to individuals. Straightforward
evaluation technique would be to simply call evaluation function on every string
corresponding to individual expression.

But since most time consuming activity of evaluating using Hint is its initial-
ization, it is much more effective to collect all the individuals to be evaluated in
the current generation and create huge string representing list of expressions and
evaluate this string of all individual.

Another notable comment about implementation comes from fact that Hint
needs to know type of the expression being evaluated. This particular thing had
enormous enlarging effect on pain produced by need to fight the type system in
order to make it reasonably working piece of software. This may be caused by
the fact that I am still pretty inexperienced Haskell programmer, since this is my
first bigger program done in this language.

Moral of this remark is the following one: If you plan to use the Hint in your
Haskell program on place where it will be used to eval expressions of various
types, think through the integration of the evaluator into the whole system in
advance.
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Let us finish this brief chapter about implementation of our system by listing
other not yet mentioned source files with a little information about them.

• Server.hs — File containing main of the server.

• Register.hs — Place for registering the problem to make it appear in the
list of problems in GUI.

• InhabTree.hs — Core of the term generating method.

• TTerm.hs — Code related to typed λ-terms represented as @-trees.

• TTree.hs — Code related to typed λ-terms represented as sexpr-trees.

• Heval.hs — Evaluator wrapper code.

• Dist.hs — Implementation of ”probability distribution” data structure
used as container for population.
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5. Results

In this section will be presented usage of the system in order to solve specific
problems. Several problems will be described and some of them compared with
results of others.

5.1 Simple Symbolic Regression

Simple Symbolic Regression is a problem described in [1]. Objective of this prob-
lem is to find a function f(x) that fits a sample of twenty given points. The target
function is function ft(x) = x4 + x3 + x2 + x.

Desired type of generated programs σ and building blocks context Γ are fol-
lowing.

σ = R→R
Γ = {(+) : R→ R→ R,

(−) : R→ R→ R,
(∗) : R→ R→ R,
rdiv : R→ R→ R,
sin : R→ R,
cos : R→ R,
exp : R→ R,
rlog : R→ R}

where

rdiv(p, q) =

{
1 if q = 0

p/q otherwise

rlog(x) =

{
0 if x = 0

log(|x|) otherwise.

Fitness function is computed as follows

fitness(f) =
20∑
i=1

|f(xi)− yi|

where (xi, yi) are 20 data samples from [−1, 1], such that yi = ft(xi).

An individual f such that |f(xi)−yi| < 0.01 for all data samples is considered
as a correct individual.
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5.1.1 Experiments

On this problem we demonstrate that if control parameters are set to be compat-
ible with standard GP, then the results obtained fit the results presented in [1]
relatively well.

Those control parameters are following two:

• Ramped half-and-half strategy is used as search strategy.

• Option of preserving the best individual into the next population is set off.

The experiment consisted of 50 independent runs of GP algorithm. Each run
had maximally 50 generations (50 + 1 for generation 0) and 500 individuals as
population size.

We analyze the ability of the system to produce a correct solution. We are
interested in percentage of runs that led to discovery of correct solution. And we
also use the popular measurement method within GP field — the performance
curves described in [1].

First performance curve is the cumulative probability of success P (M, i), where
i is generation number (i = 0 for initial population) and M is the size of the
population. P (M, i) is probability that a correct solution will be find in one run
of GP with maximal number of generations i and population size M . P (M, i)
is computed as percentage of runs yielding a correct solution in generation i or
earlier.

From values of P (M, i) are computed values of the second performance curve
I(M, i, z) — the total number of individuals that must be processed to yield a
correct solution with probability z by multiple runs of GP with maximal number
of generations i and population size M (usually z = 0.99).

As is described in [1], The number R(M, i, z) of independent runs required to
yield a correct solution is computed as

R(M, i, z) = d log(1− z)

log(1− P (M, i))
e,

thus I(M, i, z) is computed as

I(M, i, z) = (i+ 1) ·M ·R(M, i, z).

It scored 17/50 (34%) success rate. Minimal I(M, i, z) was in generation 23
with 192,000 individuals to be processed. The experiment took 46 minutes.

Let us compare it with results from [1] (based on 113 runs):
Success rate 35%; minimal I(M, i, z) in generation 24 with 162,500 individuals

to be processed. This seems like a pretty good match.
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Second experiment was performed to compare ramped half-and-half strategy
with our geometric strategy (with default parameter q = 0.75). Thus all control
parameters stay same except for the search strategy for generating algorithm.

It scored 21/50 (42%) success rate. Minimal I(M, i, z) was in generation 29
with 150,000 individuals to be processed. The experiment took 26 minutes.

So our geometric strategy is slightly more successful then ramped half-and-
half strategy. But more interesting is that it made the whole experiment almost
twice as fast; reason of this will be discussed in more detail in the next problem.
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5.2 Artificial Ant

Artificial Ant is another problem described in [1]. Objective of this problem is
to find a control program for an artificial ant so that it can find all food located
on ”Santa Fe” trail.

The Santa Fe trail lies on toroidal square grid. The ant is in the upper left
corner, facing right. It has following layout.

The ant is able to move forward, turn left, and sense if a food piece is ahead
of him.
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Desired type of generated programs σ and building blocks context Γ are fol-
lowing.

σ = AntAction

Γ = { l : AntAction,

r : AntAction,

m : AntAction,

ifa : AntAction→ AntAction→ AntAction,

p2 : AntAction→ AntAction→ AntAction,

p3 : AntAction→ AntAction→ AntAction→ AntAction}

Action l turns the ant left.
Action r turns the ant right.
Action m moves the ant forward.
Action ifaxy (if-food-ahead) performs action x if a food piece is ahead of the

ant, otherwise it performs action y.
Action p2xy first performs action x and after it action y.
Action p3xyz first performs action x, after that action y and finally z.

Actions l, r and m each take one time step to execute.
Ants action is performed over and over again until it reaches predefined max-

imal number of steps. In [1] this limit is set to be 400 time steps.
Fitness value is equal to number of eaten food pieces.
An individual such that eats all 89 pieces of food is considered as a correct

solution.

There is also mentioned following ant program which is described as correct
solution.

(ifa m (p3 l (p2 (ifa m r) (p2 r (p2 l r)))(p2 (ifa m l) m)))

But here arises a problem: In our implementation this program needs 545 time
steps; if it is given only 400 time steps, then it eats only 79 pieces of food. It is
uncertain whether it is caused by my mistake in implementation or by inaccuracy
in [1]. Since everything else seems working just fine, I have decided to set the
limit to 600 in my experiments.

5.2.1 Experiments

Due to those uncertainties, we will not perform comparing experiments as we did
in the problem of simple symbolic regression.

In the following experiments, the option of preserving the best individual into
the next generation is active (since we are not trying to compare with results in
[1]).

As usually, first experiment consisted of 50 independent runs of GP algorithm.
Each run had maximally 50 generations and 500 individuals as population size.
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Ramped half-and-half strategy is used as search strategy for the first experiment.

It scored 7/50 (14%) success rate. Minimal I(M, i, z) was in generation 28
with 449,500 individuals to be processed. The experiment took 265 minutes.

Similarly as in previous problem, second experiment was performed to com-
pare ramped half-and-half strategy with our geometric strategy (with default pa-
rameter q = 0.75). Thus all control parameters stay same except for the search
strategy for generating algorithm.

It scored 19/50 (38%) success rate. Minimal I(M, i, z) was in generation 10
with 115,500 individuals to be processed. The experiment took 107 minutes.
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This is big improvement in all three watched factors:

1. 38% vs 14% success rate.

2. 115,500 vs 449,500 individuals needed to be processed.

3. 107 vs 265 minutes.

Third factor, the time difference might give us clue about what is going on.
Those two experiments differs only in used term generating method. Dur-

ing one run the vast majority of the time is spend by evolution, the generation
process only slightly prolongs the time spend in generation 0. The run time of
the evolution is influenced by two important factors: Number of generations and
time that crossover takes.

The number of generations of more successful method is surly smaller, but it
seems improbable that it would have such a big impact (this is idea is supported
by results of experiments with even-parity problem, where times are almost the
same but success rates differs significantly).

Time of crossover is proportionate to number of nodes that an individual has.
Thus it seems that observed slowdown is due to terms being too big.

In order to test this hypothesis, we run additional experiments to get statistics
about dynamics of individuals’ sizes.

Following graphs are base upon 10 run experiments.

Those graphs show enormous differences. The graph of Ramped half-and-half
strategy evidences occurence of well known problem of GP called bloat. Bloat is
defined as program growth without (significant) return in terms of fitness [3].

As is further stated in [3], bloat has significant practical effects.

• Large programs are computationally expensive to evolve and run.
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• Large programs can be hard to interpret.

• Large programs may exhibit poor generalisation.

For these reasons bloat has been a subject of intense study in GP.
On the contrary, our strategy seems to be successfully fighting with bloat in

this particular problem.
It is also noticeable from the correct solutions that have been found.
Here follow all 7 correct solutions found using ramped half-and-half strategy.

1. p2 (ifa (p2 l r) (ifa (ifa (p2 m m) (p2 m l)) (p2 (ifa l r) (p2

m r)))) (ifa (i fa (p3 m (ifa m m) l) (p2 r r)) (ifa (ifa (p3 (p2

m l) (ifa (p3 (p2 m (ifa l m)) (p3 (ifa r (p2 (ifa (p2 m r) (p3

l r m)) (p2 m r))) m l) (p2 m l)) (ifa (p3 r l l) (p3 m m r))) (ifa

(p3 l l r) (p2 (ifa l r) (p2 m r)))) (p2 l r)) (ifa (p3 m l l) (p2

r r))))

2. p3 (ifa (p3 (p3 m m r) (p3 (ifa (p3 (p3 m m r) (p3 r l l) (ifa m

l)) (ifa (p3 l r (ifa (ifa m m) (p3 r l (p2 (ifa m l) (ifa (p3 (p2

l (p3 (ifa m m) (p2 l m) (p2 l r))) (p2 (ifa (ifa m r) (p3 r m l))

(p3 (ifa l l) (p3 l r l) (p2 l l))) (p2 (ifa (ifa m l) (p2 l r))

(p2 (p2 l m) (p3 l r m)))) (ifa (ifa (p3 (p3 r m m) (p3 (p2 l m)

(p2 l m) (ifa m m)) (ifa l m)) (ifa (p3 l r m) (ifa (ifa r r) (p2

m l) ))) l)))))) (ifa l l))) m (p2 (p2 (ifa l l) (ifa m r)) r))

(ifa m l)) (ifa (p3 l r (ifa (ifa m m) (p3 r l (p2 (ifa m l) (ifa

(p3 (p2 l (p3 (ifa m m) (p2 l m) (p2 l r))) (p2 (ifa (ifa m r) (p3

r m l)) (p3 (ifa l l) (p3 l r l) (p2 l l))) (p2 (ifa r (p2 l r))

(p2 (p2 l m) (p3 l r m)))) (ifa (ifa (p3 (p3 r m m) (p3 (p2 l m

) (p2 l m) (p2 l r)) (ifa l m)) (ifa (p3 l r m) (ifa (ifa r r) (p2

m l)))) l)))) )) (ifa l l))) m (p2 (p2 (ifa l l) (ifa m r)) r)

3. p2 (ifa (p3 m m m) (p2 r m)) (p3 (ifa l r) (ifa (ifa l (p3 (p3 r

r l) (ifa l m) (ifa m (ifa (p2 (p3 (p3 (p3 (ifa m l) (p2 r r) (ifa

m m)) (p3 (p3 r r r) (ifa r r) (p2 m l)) (p3 (p2 m m) (p3 r m r)

(ifa m r))) (p2 (p2 (p3 r l m) (p2 m m)) ( p3 (ifa r l) (p2 m l)

(p2 r m))) (p3 (ifa (ifa r l) (p3 m m r)) (p3 (ifa r m) (p3 l l

r) (p2 r r)) l)) (p2 (p2 (p2 (p2 r r) (p2 r l)) (p3 (ifa r r) (p2

l l) (p2 m l))) (p3 m r l))) (p2 (ifa (ifa (p3 (ifa m r) (p2 (p3

(p3 r r l) (ifa l m) (p3 m l r)) (p2 m r)) (p3 l l l)) (ifa (p3

l l m) (ifa l r))) (ifa (ifa (ifa m r) (ifa l l)) (p2 (ifa l m)

(p2 l m)))) (p3 (ifa (p2 (p2 r m) (p3 m l m)) (ifa (p2 r l) (p3

r m r))) (p2 (p2 (p2 r r) (ifa l r)) (p3 (p3 m m m) (ifa m r) (ifa

l m) )) (p2 m l))))))) r) (ifa l r))

4. p2 (p3 (p2 m l) (ifa r l) (ifa m l)) (ifa (p2 m m) (ifa r l))

5. p2 (p2 m r) (ifa m (p2 (p2 r r) (ifa (ifa (ifa m r) (p3 m m l))

r)))

6. ifa (p2 (p2 m m) (p2 m l)) (p3 (p2 r r) (ifa m l) (p2 m l))

7. p2 (ifa (p2 (ifa r m) (p2 (p2 (p2 l m) (p3 m m r)) (ifa l l))) (p3

(p2 l l) (ifa m l) m)) l
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Compare it with 18 solutions obtained by using geometric strategy (I acci-
dentally lost one solution).

1. ifa m (p3 r (ifa (ifa m (ifa m (p3 r (ifa m r) m))) (ifa m (p2 (p2

m (ifa m (ifa m (ifa m (p3 r (ifa m r) m))))) (ifa m r)))) m)

2. p3 (ifa m l) (p3 m l (ifa (p2 m (ifa l (p2 (p2 (p2 m (ifa m m))

(ifa (ifa m l) r)) (ifa m l)))) r)) r

3. ifa l (ifa (p3 (p2 (p2 r (ifa r m)) (p3 l (ifa m (ifa m l)) r))

l m) (p2 r (ifa m (p2 l (p2 (p2 l (ifa m r)) m)))))

4. p3 m (p3 r (ifa m l) l) (ifa (p2 (p3 m m r) (ifa m l)) r)

5. p3 (ifa m (ifa (ifa m m) (ifa m r))) m (p3 r (ifa (p3 (ifa m r)

m (p3 r (ifa m l) m)) l) l)

6. p3 (ifa m l) (p2 m l) (ifa (p3 (ifa m (ifa m l)) m r) (p2 (ifa m

(ifa r l)) l))

7. p3 (p3 r (ifa (p2 (ifa m (ifa (ifa m r) m)) m) l) m) l (ifa m r)

8. ifa (p3 m (ifa (ifa r m) r) l) (p3 (p3 l (ifa m r) r) (ifa m (ifa

m l)) m)

9. p3 m (p3 l (ifa (p3 m (ifa m m) m) r) r) (ifa m (ifa m l))

10. p2 (ifa (ifa m (p3 l (p2 (p2 (ifa (ifa m l) l) m) (ifa m r)) (p2

(ifa (ifa (ifa (ifa (p3 r l m) r) l) l) (p3 l (ifa m r) (ifa m r)))

m))) r) (p2 (p3 r (ifa (if a (p2 (ifa m (ifa (ifa (ifa (p3 m r (ifa

l l)) l) l) l)) m) (p3 l (p2 (ifa m (p2 l m)) (ifa m r)) m)) l)

m) l)

11. ifa (ifa m (ifa m r)) (ifa (ifa (ifa m l) r) (p3 (p3 l (ifa m r)

(p3 r l r)) ( ifa m l) m))

12. ifa (p2 m r) (ifa (p2 (ifa (p2 l m) r) m) (p3 l m (ifa r (p3 l (ifa

m r) r))))

13. p3 (p3 l (ifa m r) r) (ifa (p3 m m (p2 r (ifa (p3 r (ifa m l) (ifa

m l)) l))) l ) m

14. p3 r (ifa m (p3 l l (ifa (ifa m m) r))) m,89.0,Just 4) (ifa (p3

(ifa m l) r (ifa m l)) (ifa m (p3 (p3 l (ifa m r) m) r (ifa m l)))

15. ifa m (p3 (ifa l (p3 r (ifa (ifa l l) (ifa (ifa r r) r)) (ifa r

r))) (ifa (ifa m r) r) m)

16. p3 (ifa (ifa (ifa m l) l) l) (p3 m (ifa (ifa (ifa (p2 m l) l) (ifa

r r)) l) ( ifa m (ifa m r))) r

17. ifa (ifa (ifa m r) r) (p3 r (ifa (ifa m (p3 (ifa m (ifa m r)) (ifa

(ifa r l) r) (ifa m l))) (ifa l (p3 (ifa m l) (ifa m l) (ifa m (ifa

m r))))) m)

18. p3 (p3 m r (ifa (p2 m m) l)) l (ifa m r)
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Let us also examine average term sizes of the Simple Simbolic Regression
problem, again based on 10 runs.

In this case the difference is not that radical, but still we can see that runs of
SSR using ramped half-and-half tend to have terms approximately twice as big
as runs using geometric strategy.
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5.3 Even-parity problem

The even-parity function is a boolean function taking as inputs N boolean values
and returning True if an even number of inputs are True. For odd number it
returns False.

The reason why examine this problem is that it has been used by many re-
searchers as a benchmark for GP [4].

We compare our results with that obtained by Yu in [4], where is presented
approach to evolve recursive and modular programs by use of higher-order func-
tions and λ-abstractions. Since the results are highly sensitive to set of building
blocks, we use very similar set of building blocks in order to make the results
comparable.

σ = [Bool]→ Bool

Γ = {and : Bool → Bool → Bool,

or : Bool → Bool → Bool,

nand : Bool → Bool → Bool,

nor : Bool → Bool → Bool,

foldr : (Bool → Bool → Bool)→ Bool → [Bool]→ Bool,

head′ : [Bool]→ Bool,

tail′ : [Bool]→ [Bool]}

The type [Bool] stands for list of Bools and for purpose of this problem is
considered atomic.

Unlike in [4], we use specific instance of polymorphic function foldr. And
modifications of functions head (returning the first element of the list) and tail

(returning the list without the first element) are used; making them total by
returning default value False and [], respectively.

The fold function is higher order function widely used in Haskell program-
ming language, recursively defined as follows.

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr f z [] = z

foldr f z (x:xs) = f x (foldr f z xs)

Let us demonstrate foldr’s behavior on the following simple example.

foldr xor False [True,False,True]

= xor True (foldr False [False,True])

= xor True ( xor False ( foldr False [True] ) )

= xor True ( xor False ( xor True (foldr False [] ) )

= xor True ( xor False ( xor True False) )

= False

The reasons why is this difficult problem for GP to solve are following [4]:
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• Since a single change of one input generates a different output, the output
is highly sensitive to all inputs.

• The building blocks set does not contain functions xor or eq, which are keys
to solving the problem. But those two functions may be discover by GP.

We use the same fitness function as in [4]. The fitness function examines the
individual by giving it all possible boolean lists of length 2 and 3. Thus resulting
in 22 + 23 = 12 test cases. For each correct response it receives 1/12, therefore
correct solution receives fitness value 1.

It is interesting that such a few fitness cases are sufficient to find general
solution (it was so for every solution I tried). It comes from the Γ, the solution
tends always be foldr with xor defined by the lambda abstraction.

5.3.1 Experiments

Series of five experiments have been performed to test properties of our system.
Each experiment consisted of 50 independent runs of GP algorithm. Each run
had maximally 50 generations and 500 individuals as population size.

In those experiments we examined influences of the following factors:

• Option of preserving the best individual into the next population.

• Option of performing η-normalization of generated individuals (conversion
from lnf to βη-nf , see 2.5.1).

• Representation of individuals: sexpr-tree vs @-tree.

• Option of performing optimized abstraction elimination (see 3.3.1) instead
of the simple one.

The setup of the first experiment was following:

• Geometric search strategy for generating individuals with default q = 0.75.
This option is unchanged for all five experiments.

• No best individual preservation.

• η-normalization was not performed.

• Individuals represented as sexpr-trees.

• Simple abstraction elimination.

Thus the simplest one setup; all extra features are off. In each following
experiment one extra feature will be turned on, in hope that it will enhance the
performance.

The correct individual was yield in 17 out of 50 runs, i.e., 34% success rate.
Interestingly, in 2 runs out of 50, a correct solution was present in the initial

population.
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The smallest value in this graph is used to indicate the minimum effort (i.e.
number of individuals to be processed) for GP to yield a correct solution.

Thus for this experiment this analysis suggest to perform only term generating
and no evolution at all, because the smallest value 56500 is in generation 0.

This experiment took 59 minutes (on average desktop computer).

Second experiment was different from the first one in that it preserved the
best individual to the next generation.

It scored 22/50, i.e., 40% success rate. A correct solution was created once in
the initial generation and again it was sufficient to make the value in generation
0 be the smallest value in the I(M, i, z) curve; now 114000 individuals to be pro-
cessed. This experiment also took 59 minutes.

Third experiment was different from the second one in that η-normalization
of generated individuals was performed.

It scored 27/50, i.e., 54% success rate. Two runs contained a correct solution
in the initial population. But now the I(M, i, z) was best for generation 1 with
56000 individuals to be processed. This experiment took 53 minutes.

Fourth experiment was different from the third one in that @-tree represen-
tation was used instead of sexpr-tree.

It scored 34/50, i.e., 68% success rate. Again two runs contained a correct
solution in the initial population. The I(M, i, z) was best for generation 0 with
56500 individuals to be processed. This experiment took 64 minutes.

As we will see, this setup was the most successful one.
Fifth, last experiment was different from the fourth one in that optimized

abstraction elimination was used instead of the simple one.
It scored 33/50, i.e., 66% success rate. One run contained a correct solution

in the initial population. The I(M, i, z) was best for generation 6 with 59500
individuals to be processed. This experiment took only 30 minutes.
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5.3.2 Comparison with other results

Our results are less successful then those presented by Yu [4]; they scored 40/50,
i.e., 80% success rate. Her I(M, i, z) was best for generation 4 with 17500 indi-
viduals to be processed. (We scored 34/50 (68%); min I(M, i, z) = 56, 500.)

Yu also uses crossover as the only genetic operator, thus we can narrow the
discussion to discussion of generating method and crossover method.

Design of our crossover comes from that we wanted it to be very simple gen-
eralization of standard tree-swapping crossover. Whereas the crossover used by
Yu is more structure oriented — as is stated in [4] the crossover can only op-
erate between nodes in two main programs or between nodes in the same kind
of λ abstraction (i.e., λ abstractions that represent the same function arguments
to the same higher order function). And also variable terminals of Yu’s lambda
functions are constrained to be only the variables of that lambda function, not
from some outer scope. This may be advantage for this particular problem be-
cause xor does not need any outer variable (recall that most common solution is
combination of xor and foldr in some similar way as foldr exaple above). From
an optimist’s point of view 34/50 versus 40/50 is not such a huge difference when
we take to account that our general tree-swapping crossover is competing with
specialized one.

Since our method has better success rate for generation 0, it would be in-
teresting to try combination of our generating method with crossover used by
Yu.

Another optimistic observation is that our result at least outperforms other
results mentioned in [4] with which Yu’s method is compared.

Generic genetic programming scored 17/60 (28%); min I(M, i, z) = 220, 000.
GP with ADFs scored 10/29 (34%); min I(M, i, z) = 1, 440, 000.
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5.4 Flies and Apples

Flies and Apples is problem consisting in breeding control programs for a fly
agent in a simple world.

Whereas previous problem is a kind of problem where we know precisely what
problem we are solving and where we are more interested in performance statistics
than in the solutions since we know the correct solution in advance, problem we
are going to present now is of more playful nature. In this problem we are not
interested in numerical results, instead we are hoping for interesting behavior to
emerge.

We start with defining a simple simulation and goal for agents. Then we
prepare first testing simulation world. After that we write some agent programs
by hand. After that we identify some useful recurring themes occurring in those
programs and pack them into functions which will become building blocks. During
this process are also identified useful sensory data to be prepared for the agent
program. After that we run the evolution and iteratively continue in this process
— we may add more testing worlds, add more functions or change them, etc.

Since we do not need to satisfy the closure constraint, it is much easier to
perform such a ”human-computer jam” than it would be in standard GP. And it
is further simplified by use of functional language (such as Haskell) where almost
every construct can be expressed as function (or value).

Another advantage of typed GP over standard GP is that it is more capable
of handling huge set of building blocks, since the search space can be significantly
smaller due to fact that types must match.

Fly world is a square grid. Each cell is ether empty or contains precisely one
object. There are three kinds of objects:

• Wall

• Apple

• Fly

Apples and flies have energy.
Moreover, each fly has its control program and inner state, so called registers.
There is a queue of all flies in the fly world determining which fly is next to

make a move. After the fly in the front of the queue performs its move, it is
put to the back. In other words, flies are cyclically taking turns similarly like in
common card games.

A control program of a fly has as input a collection of various sensory in-
formation and returns as output agents move and agents registers for the next
turn.

Fly can perform two kinds of moves:

• Trave. Moves the fly to one of four adjacent cells determined by direction
specified in the move. Result of the travel move depends on the content of
the target cell.
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– If it is empty, then the fly simply moves to that cell.

– If it contains wall, then no movement is performed.

– If it contains an apple, then the fly moves to that cell, the apple is
eaten and its energy is added to energy of the fly.

– If it contains another fly, then the fly moves to that cell, the fly with
bigger energy stays alive and the weaker one is eaten and its energy is
added to energy of the stronger fly.

• Split. Puts a daughter fly to one of four adjacent cells. Together with the
direction, amount of energy and new registers for the fly are specified by this
move. The mother gives this energy to its child. In order to be successful,
the target cell must be empty and the mother fly must have energy greater
then 1.

Agent’s fitness is computed as sum of fitness cases; each fitness case consists of
one fly world and fitness in a fly world is computed as sum of agent’s energy and
of energy of all his descendants (daughters, granddaughter, ...) after predefined
number of rounds.

Let us look in more detail on input for fly. It is collection of various useful
information. Its components are:

• Current value of fly’s Registers.

• Energy of the fly.

• Direction of the last successful travel move.

• Boolean value indicating whether the last move was successful.

• Direction of the nearest apple.

• Distance to the nearest apple.

• Energy of the nearest apple.

• Direction of the nearest fly.

• Distance to the nearest fly.

• Energy of the nearest fly.

• Direction of the ”center of gravity” of all apples.

• Distance to the ”center of gravity” of all apples.

Set of building blocks is following.

σ = Input→ Output

Γ = {dUp : Direction,

dDown : Direction,

dLeft : Direction,

dRight : Direction,

output : Move→ Registers→ Output,
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travel : Direction→Move,

split : Direction→ Int→ Registers→Move,

easySplit : Input→Move,

myEnergy : Input→ Int,

myLastTravel : Input→ Direction,

myWasSuccess : Input→ Bool,

nAppleDir : Input→ Direction,

nAppleDist : Input→ Distance,

nAppleEnergy : Input→ Int,

nF lyDir : Input→ Direction,

nF lyDist : Input→ Distance,

nF lyEnergy : Input→ Int,

cAppleDir : Input→ Direction,

cAppleDist : Input→ Distance,

myRegs : Input→ Registers,

xGet : Input→ Int,

yGet : Input→ Int,

zGet : Input→ Int,

dGet : Input→ Direction,

xSet : Int→ Registers→ Registers,

ySet : Int→ Registers→ Registers,

zSet : Int→ Registers→ Registers,

dSet : Direction→ Registers→ Registers,

xInc : Registers→ Registers,

yInc : Registers→ Registers,

zInc : Registers→ Registers,

rotCW : Direction→ Direction,

(==) : Int→ Int→ Bool,

(<=) : Int→ Int→ Bool,

if ′ : Bool → Output→ Output→ Output,

if ′ : Bool →Move→Move→Move,

if ′ : Bool → Direction→ Direction→ Direction,

if ′ : Bool → Int→ Int→ Int,

if ′ : Bool → Distance→ Distance→ Distance,

if ′ : Bool → Registers→ Registers→ Registers,

0 : Int,

1 : Int,

2 : Int}
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We will not discuss it in great detail, only briefly: First four elements are
four direction values. Next four functions are constructors for Output and Move
type. Next twelve functions are for accessing components of Input. Next eleven
functions are related to Registers. The rotCW performs clock-wise rotation of
a direction. Next two functions are comparison functions. Next six are various
if s. And last three are integer constants.

This gives 44 elements of building block context. It is quiet huge context,
especially if it was a standard GP T ∪ F .

So the set of atomic types is following =
{Move,Bool, Registers, Input,Direction, Int, Output,Distance}.

We currently use three worlds. First one looks like this:

Other two worlds are reaction on typical behavior of a trivial and boring fly
which was successful enough to prevent further evolution. This boring strategy
was just following the path of the nearest apple.
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Following two worlds are therefore ”Devil’s gift” for this fly.

In the second world the boring fly enters the corridor and misses the mega
apple. The third world escalates previous idea into absurdity. The boring fly eats
nothing since it dumbly tries to eat the apple behind the wall.

By introduction of those two new worlds new kinds of behavior emerged, but
not interesting enough to be worth explaining here. One can, however, check
those behaviors out in the gallery of interesting fly behaviors, included on the
enclosed CD.

In the initial experiments there was problem with that flies did not want to
split. This was due to that they were given default energy 1. Since this problem
is not tied by some unchangeable definition, we changed this default value to 100
and aded a siplified version of split constructor. That had aftermath in new kinds
of behavior.
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Application of this kind of approach is for example computer games design
where non-linearity and adaptability to players actions are highly appreciated.
Also games are not tight by some fixed specification so this approach might be
very appropriate in this industry.
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6. Previous related work

6.1 Evolution of Constrained Syntactic Struc-

tures

Evolution of Constrained Syntactic Structures is mechanism proposed by Koza
in [1] for relaxing the closure requirement.

Problem specific rules of construction are used to constrain which function
node can have which child node.

Those rules are used in generating method similar to the standard one.
For purposes of crossover types of symbols are listed - e.g. in the problem of

symbolic multiple regression (and various other problems) those types are

• the root, and

• non root points.

Crossover is performed by first selecting any node in the first parent and after
that by selecting node of the same type as the first node.

System based on types do this task more indirectly and in a simple systematic
manner.

6.2 Strongly Typed Genetic Programming

One of first such type based systems was that described by Montana in [5]. This
system is called Strongly Typed Genetic Programming (STGP). Beside simple
types he also uses kind of polymorphism called generic functions based on table
lookup.

Used generating method is generalization of the standard one dealing with
type restrictions and . Moreover, checking preventing selection of node which
makes it impossible to complete the subtree is performed.

The crossover works in similar manner as that Koza used in his Constrained
Syntactic Structures. Such a crossover is less cautious then that used in our
system since it may fail to find a node with desired type in the second parent. If
the crossover fails, then the crossover returns either parents or nothing.

We were briefly measuring fail rates for such a crossover and it was some-
where around 15% for even-parity problem. Thus we prefer to perform the more
cautious version described in 3.3.2.

This system does not involve use of lambda abstractions or higher-order func-
tions.

72



6.3 Higher-Order Functions and Lambda Ab-

stractions

In [4] Yu presents a GP system utilizing polymorphic higher-order functions 1

and lambda abstractions.
Important point of interest in this work is use of foldr function as a tool for

implicit recursion, i.e. recursion without explicit recursive calls.
Approach described in this work is more specialized then our approach in the

following ways.

• The terminal set for constructing lambda abstraction subtrees is limited to
use only constants and variables of that particular lambda abstraction, i.e.,
outer variables are not allowed to be used as terminals in this work.

• Whereas we see lambda head of lambda function as another kind of node (as
parent node of the body of the function), in this work whole lambda function
is considered more as single point with internal structure. Higher-order
functions and its lambda abstractions are said to form two-layer-hierarchy
called in this work structure abstraction.

• The crossover used in this work can only operate between nodes in the two
main programs or between nodes in two lambda abstractions that represent
the same function arguments to the same higher order function.

The difference between approach presented in this work and our approach
may be stated in the following way. Approach presented in [4] tries to adopt
some useful constructs from domain of functional programming and use them for
a benefit in problem solving by GP. Whereas our approach is to perform genetic
programming directly in the simply typed lambda calculus.

6.4 Functional Genetic Programming with Com-

binators

In [8] by Briggs and O’Neill is presented technique utilizing GP with combinators
in similar way as we do.

The difference between approach presented in this work and our approach is
that in this work terms are generated straight from library (their term used for
context) of combinators, whereas we first generate λ-terms which are subsequently
translated into combinator terms.

Thus we can in our system see the combinator representation as option which
can be turned off, whereas their system has this feature ”hard-wired”. On the
other hand, their advantage is that direct generation of terms generates shorter
combinator terms than indirect generation.

They are using more general type system then us — the Hindley–Milner type
system. So the system is polymorphic.

They also discuss the properties of exhaustive enumeration of terms and com-
pare it with GP search. Since our successful term generating geometric strategy is

1Higher-order function is a function taking another function as input parameter.
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based on undisciplined exhaustive enumeration, this is another interesting thing
that connects our two systems.

Another really interesting concept is their Generalized genetic operator based
on term generation. Suppose we have some terms we want to operate on (for
one term it corresponds to mutation, for two (parent) terms it is crossover, etc.).
In order to do that we construct library of all subterms of all terms we want to
operate on and from this library we generate new individuals by supplying it with
desired type.

It would be nice to use some ideas inspired from this work in the future
improvements of our system.
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7. Future work

7.1 Polymorphic variant

At this point I have almost complete implementation of polymorphic generaliza-
tion of the system.

This involves extending the type system so that we also have type variables.
Lets very briefly sketch the key phases.
Then instead of simple equality checking of the current type with return type

of the function, we try to fined most general unification of those two type terms.
If it succeeds, than we may use this function symbol (or constant). Important
part is to deal in the right way wit obtained substitution.

7.2 Mutation

Since we have term generating method, it is easy to define subtree changing
mutation.

Also node changing mutations are easy.
It would be also nice to perform some kind of informed (or clever) mutation -

that is mutation that tries more possibilities and selects the best one (i.e. performs
a local search).

In the lambda calculus context, it would be interesting to try some reduction
based mutations — simplifying the term by bringing it to normal form form which
it was dragged away by crossovers and other mutations.

Also mutations of number-like constants would be useful.

7.3 Big Context

Big Context is an unfinished problem involving breeding of clasical functional
functions as head,tail,map,elem,filter. We first take small sufficient Γ for
each function to be evolved. After that we fuse those contexts into one big
context and check whether the functions are still evolvable. Or we may try to
evolve several functions at once by evolving tuples of them.

We have postponed this problem since it is much more suitable for polymor-
phic system.

7.4 Parallelisation

Since Haskell is very good at Parallelisation and GP is easily parallelised, it comes
naturally to connect the two.

7.5 Future ideas with Inhabitation trees

I have lot of ideas involving inhabitation trees and informed term generation.
Number labeled inhabitation tree may be used as more informed version of geo-
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metric strategy. Variation of ant colony optimization could be used as vehicle for
this informed term generation. This ACO would differ from classical one in that
it would use trees instead of paths. Ant may select one edge (or-node) or clone
himself (and-node). The global criterion determining the pheromone trail inten-
sity are based upon fitness and local heuristic would be some term shortening
factor. 1

1 Unfortunately I have run out of time for writing this thesis so I must let this favorite theme
of mine mostly unexplained.
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Conclusion

The goal of this thesis was to design and implement a system performing GP
over some typed functional programming language. As this typed functional
programming language we have chosen the simply typed lambda calculus. We
have also obligated ourselves to do it in a such way that generalizes the standard
GP, rather than crates completely new system.

We may say that we have chosen the simplest possible option in both areas —
the simply typed calculus and the standard GP. We see this decision as fortunate
one — since it enables us add more complex features after sufficient exploration
of those simplest cases.

We have started the journey toward this goal by study of subject that in-
tersects both those areas: Method which for desired type and context generates
lambda terms.

The way to obtain this method started with inference rules (the defining
concepts of the typed lambda calculus), it proceeded through term generating
grammars and finished with inhabitation trees.

A* algorithm in combination with inhabitation trees has been utilized to drive
systematic enumeration of typed λ-terms in their lnf . This enumeration was fur-
ther parameterized by simple search strategy in order to enable such different
approaches as systematic generation and ramped half-and-half generation to be
definable in the means of simple search strategy.

With this apparatus in hands we introduced novel approach to term generation
by defining the geometric search strategy. This strategy is further parameterized
by parameter q, but since we wanted to avoid suspicion that success of this
generating method depends on fine-tuning of this parameter, we used its default
value q = 0.75 in every experiment.

After being generated all terms undergo process of abstraction elimination,
which enables our simple tree swapping crossover operation which is only genetic
operator that we have used in all experiments.

We examined it in three different experiments, which all supported the idea
that it has very desirable qualities.

First two experiments, Simple Symbolic Regression and Artificial Ant, were
performed in order to compare the geometric strategy with the standard GP term
generating method ramped half-and-half.

In both experiments were observed improvements in the following aspects.

1. Success rate was improved.

2. Minimal number of individuals needed to be processed in order to yield
correct solution with probability 99% was lowered.

3. Run time was significantly reduced.

4. Average size of a term was decreased.

In the case of Artificial Ant problem, all improvements were significant.
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These results make me believe that geometric strategy might be welcomed
reinforcements in the fight against the bogey of the GP community — the bloat.
Or at least, it seems to work for those two experiments in a such way.

In the third experiment, the even-parity problem, geometric strategy showed
ability to yield correct solution in the initial generation 8 times out of 200 runs
(throughout 5 experiments), which is interesting result since it is uninformed
search.

Five consecutive experiments with even-parity problem supported hypothesis
that η-normalization of generated terms enhances performance. We have also seen
that use @-trees instead of more traditional sexpr-trees as tree representation of
individuals is able to enhanced performance.

Use of optimized abstraction elimination instead of its basic variant showed
significant improvements in time consumption with little or non effects on per-
formance rates.

Implemented system was designed with importance of interactivity in mind,
resulting in server/client architecture for core/GUI components.
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A. Enclosed CD

The enclosed CD contains implementation source codes, installation instructions
and some other material, all described in a greater detail in the readme.txt file.
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